Реферат: Свойства усредненной функции с сильной осцилляцией
3.3)
Вычислим отдельно интегральное выражение, стоящее в числителе:
=
=
рассматривая пределы при видим что на поведение функции оказывает влияние только главный член
Поведение данной функции при эквивалентно поведению функции
(*)
Вычислим интеграл в знаменателе:
=
(**)
Учитывая (*)и (**) получаем
Следовательно, по формуле (2) получаем
3.4
Отдельно вычислим числитель и знаменатель:
По ранее доказанному в пункте 2.4 мы можем сказать что второй интеграл не оказывает влияния на поведение функции. Поэтому мы можем утверждать, что числитель эквивалентен выражению:
Вычислим знаменатель:
Разделив интеграл на 2 интеграла, мы получаем:
По пункту 2.4 можем вывести что второй интеграл не влияет на поведение функции при
Следовательно, знаменатель:
§4. Рассмотрим поведение второй производной
Для облегчения вычислений введем обозначения:
При этом формула для примет вид (6)
4.1