Реферат: Технология производства полупроводниковых материалов типа А2В6
3) рост из паровой фазы, когда она состоит из атомов или молекул элементов, образующих кристалл, и когда она состоит из различных химических соединений атомов, образующих кристалл.
Основная часть.
1.1. Методы получения полупроводниковых соединений .
1.1.1. Выращивание монокристаллов из растворов.
Выращивание кристаллов из растворов часто считают универсальным методом, позволяющим получать образцы кристаллов веществ с любыми температурами плавления, значительно диссоциирующими при плавлении, а также соединений, образующихся по перитектической реакции. При рассмотрении применимости методов выращивания из растворов монокристаллов соединений с контролируемыми свойствами следует различать следующие случаи: 1) растворителями служат вещества, не входящие в состав выращиваемого кристалла , т. е. раствор образуется путем растворения шихты заданного состава в выбранном растворителе (например, NaCl—Н2 0, ВаТЮ3 —KF, Y3 Fe<50,2 — РЬО); 2) растворителем служит один из компонентов выращиваемого соединения (GaAs—Ga, CdTe—Cd).
В первом случае выращенные кристаллы содержат в качестве примесей все компоненты раствора, включая и остаточные примеси, имеющиеся во всех веществах, которые образуют раствор. Следовательно, химическая чистота кристаллов неудовлетворительна, и нет каких-либо путей контроля возможных отклонений от стехиометрии. Во втором случае отсутствуют посторонние вещества, и чистота кристалла определяется чистотой компонентов соединения и условиями проведения технологического процесса. Возможность применения этого метода определяется типом диаграммы состояния выращиваемого соединения, поэтому метод менее универсален, чем рост из посторонних растворителей. В некоторых случаях температура кристаллизации очень высока и для подавления диссоциации необходимо проводить процесс под давлением паров летучего компонента Здесь возникают такие же затруднения, как и в случае выращивания кристаллов диссоциирующих соединений из их расплавов
Высокие температуры плавления и высокие значения давления диссоциации многих соединений вызывают большие трудности при изготовлении монокристаллов с контролируемыми свойствами методами выращивания из расплавов. Основными препятствиями являются выбор материала для изготовления контейнера для расплава, а также необходимость проведения процесса выращивания монокристаллов в атмосфере паров летучего компонента под строго фиксированным и постоянным давлением. Первое затруднение можно преодолеть, применяя метод бестигельной плавки. В отношении создания атмосферы паров летучего компонента следует отметить следующее. Определение равновесных значений парциальных давлений паров при диссоциации веществ, плавящихся при высоких температурах, является в большинстве случаев крайне сложной операцией, осуществляемой косвенными методами, а потому сопряженной со значительными ошибками измерений. Например, для давления паров фосфора над расплавом фосфида галлия в литературе приводятся значения, которые рознятся на 10—15 ат, при наиболее вероятном давлении паров фосфора, равном 25 ат. Кроме того, давление паров резко изменяется при изменении температуры (в простейшем случае по экспоненциальному закону), что требует очень тщательной стабилизации температуры источника паров и расплава. Действительно, в случае сильно диссоциирующего соединения при любом отклонении от условий равновесия расплава с паровой фазой состав расплава изменяется. Большинство соединений имеют довольно значительные отклонения от стехиометрии, а изменение стехиометрии чистого расплава вызывает изменение состава кристалла и, следовательно, его свойств.
Выращивание монокристаллов из растворов-расплавов может осуществляться следующими методами:
1) испарением избыточного, наиболее летучего компонента из раствора при соответствующем градиенте температур;
2) повышением концентрации летучего компонента в растворе при соответствующем градиенте температур путем постоянного изменения давления паров, создаваемого за счет независимого источника;
3) направленной кристаллизацией пересыщенного раствора;
градиентной зонной плавкой
1. Испарение летучего растворителя. Тигель с раствором-расплавом нелетучего компонента А расположен в летучем растворителе В в герметичной ампуле, и создадим по высоте этой ампулы распределение температур, изображенное на рис. 6.29. Будем поддерживать постоянными температуры Т1 , Т2 и градиент температур DT по высоте тигля, содержащего раствор. Начальная температура T3 в нижней части ампулы соответствует условию, что при этой температуре давление пара чистого компонента В равно давлению его паров над поверхностью раствора, находящейся при температуре T1. Если медленно понижать температуру Т3 , то начнется конденсация паров компонента В в нижней части ампулы, а концентрация его в растворе начнет понижаться. Если исходный состав раствора на диаграмме состояния находится в положении I (рис. 6.30), то по мере испарения растворителя В он будет перемещаться влево к положению II. Когда он достигнет положения //, область раствора, находящаяся на дне тигля при температуре Т2 , может быть в равновесии с кристаллом состава АВ( (!+ B) - Поэтому дальнейшее испарение компонента В создает в этой области пересыщение, которое приводит к появлению зародышей кристалла. По мере испарения компонента В (за счет понижения температуры T3 ) состав раствора все время изменяется и область пересыщения постепенно перемещается от дна к поверхности тигля и сопровождается ростом кристалла. Скорость роста кристалла зависит от скорости изменения состава раствора, т. е. от скорости испарения. Зарождение кристаллов происходит самопроизвольно; для того, чтобы получить несколько хорошо развитых кристаллов, процесс следует проводить при очень малых скоростях роста, когда в слое раствора, прилегающем к кристаллу, отсутствуют радиальные изменения концентрации, а температурный градиент по высоте имеет возможно меньшее значение. Определение скорости и закона изменения температуры Т3 , очевидно, требует предварительного установления зависимости давления пара компонента В от состава раствора, знания температурной зависимости давления паров чистого компонента В и учета скорости выравнивания состава раствора. Выращивание кристаллов этим методом требует совершенной стабилизации и регулирования температур. Отсутствие механических перемещений является существенным преимуществом этого метода.
2. повышение концентрации летучего компонента в растворе. Этот метод насыщения является обратным методу испарения и проводится в такой же ампуле с таким же распределением температур. Только в тигель загружается чистый нелетучий компонент А, а на дне ампулы располагается чистый летучий компонент В. После установления температур T1 , Т2 и заданного градиента температур DT по высоте расплава начинают повышать температуру Т3 и создавать в ампуле постепенно повышающееся давление паров компонента В. При этом происходит растворение компонента В в расплаве компонента А; состав образующеюся раствора постепенно изменяется от чистого А до раствора состава I (рис. 6.31). При этом составе область раствора, находящаяся на дне тигля при температуре Т2 может быть в равновесии г кристаллом состава АВ( 1-b) . Дальнейшее повышение концентрации компонента В в растворе создает в этой области пересыщение и приводит к кристаллизации соединения AB(1-b) .
Метод насыщения отличается от метода испарения тем, что в одном случае получаем кристалл предельного состава АВ(1-и) , а в другом — состава AB(i+и) . Сочетание двух методов позволяет установить границы области существования многих соединений и облегчает определение природы дефектов, обусловливающих отклонение от стехиометрии (так как достигаются максимально возможные отклонения от стехиометрии при данной температуре процесса).
Если выращивание данным методом крупных кристаллов часто бывает затруднительным из-за высоких требований к стабилизации и регулировке температур и большой длительности процессов , то выращивание эпитаксиальных пленок представляет большой интерес. Процесс проводится в откаченной ампуле из плавленого кварца, в верхней части которой вварено плоское стекло из оптического кварца (рис. 6.32). Монокристаллическая подложка, на которою предполагается нарастить эпитаксиальный слой, покрывается тонкой пленкой нелетучего компонента А и располагается в верхней части ампулы на небольшом расстоянии от смотрового стекла. В нижней части ампулы располагается небольшая навеска летучего компонента В. Ампула после откачки и получения вакуума запаивается и помещается в двухзонную печь. Нижняя печь I служит для создания требуемого давления паров летучего компонента В, верхняя печь II — температуры проведения процесса. Если по высоте компонента А (как бы ни был тонок его слон), нанесенного на кристалл-подложку состава АВ, не будет градиента температуры, то в результате взаимодействия паров В с жидкостью А поверхность этой последней покроется поликристаллической пленкой соединения АВ и рост монокристаллического слоя не будет обеспечен. Чтобы создать необходимый для правильной кристаллизации градиент, рекомендуется использовать радиационный нагрев поверхности жидкости А (например, параболическое или эллиптическое зеркало, в фокусе которого расположена лампа накаливания 500—1000 вт). Скорость нагрева обеих печей следует регулировать таким образом, чтобы обеспечивалось -равенство давлений паров летучего компонента над пленкой раствора и над чистым компонентом В. По достижении необходимой температуры процесса давление паров чистого компонента В устанавливается выше равновесного и включается источник радиационного нагрева. Большим преимуществом этого метода является то, что при равномерном нагреве поверхности происходит равномерное растворение подложки компонента АВ в расплаве А, причем осуществляется очистка и сглаживание поверхности роста.
3. Направленная кристаллизация пересыщенных растворов расплавов. В длинную кварцевую ампулу помещают лодочку, содержащую чистый нелетучий компонент А, и лодочку, содержащую чистый летучий компонент В. После откачки (получения вакуума) и запайки ампула помещается в трехзонную печь (рис. 6.33). Печь /, нагретая до температуры Т1 служит для создания заданного давления паров над раствором, насыщенным летучим компонентом В при температуре Т2 (печь //). Печь ///, нагретая до температуры Т3 (Т1 <Т3 <Т2 ), используется для осуществления направленной кристаллизации раствора-расплава при механическом перемещении лодочки через зону температурною 1радиента Т2 —Т3 .
При этом методе требования к стабилизации температур такие же, как и в ранее описанных, но малая скорость кристаллизации должна обеспечиваться механическим перемещением ампулы Ввиду малой скорости кристаллизации, обусловленной скоростью диффузии летучего компонента со сравнительно невысокой концентрацией в растворе к поверхности раздела растущего кристалла, даже незначительные колебания скорости перемещения ампулы могут полностью нарушить гладкость фронта кристаллизации. Поэтому для осуществления этого метода рекомендуется использовать прецизионные гидроприводы.
4. Градиентная зонная плавка. Метод градиентной зонной плавки применяют для перекристаллизации заранее синтезированных поликристаллических слитков в монокристаллы и как метод изготовления эпитаксиальных слоев, легированных примесью. Предположим, что требуется нарастить на монокристаллическую подложку арсенида галлия /г-типа слой арсенида галлия р-типа. Используем установку, изображенную на рис. 6 32. Расположим на подставке монокристаллическую пластину GaAs п-типа, покрытую тонким слоем галлия, легированного акцепторной примесью, и покроем ее сверху второй пластиной арсенида галлия. Выведем печи на рабочий режим и включим радиационный нагрев. Между верхней поверхностью нижней пластины и нижней поверхностью верхней пластины установится небольшой температурный градиент DТ. Во время нагрева обе пластины будут постепенно растворяться, и при достижении температуры Т1 между ними образуется насыщенный раствор. В результате включения источника радиационного нагрева температура нижней пластины достигает значения Т2 , а температура верхней пластины — значения Т3 , причем Т3 >Т2 >Т1 . По высоте раствора устанавливается градиент температуры и концентрации. В результате диффузии растворенного компонента верхний слой обедняется компонентом В, а нижний слой раствора обогащается этим компонентом и становится пересыщенным; это приводит к постоянному растворению верхней пластины и росту нижней. Если поддерживать по высоте не расходуемого слоя растворителя, толщина которого может быть произвольно малой, постоянный температурный градиент, то можно осуществить перекристаллизацию любого количества материала. Скорость процесса обычно мала из-за небольших количеств растворенного компонента и лимитируется скоростью его диффузии через слой расплава (D>~10~4 —10~5 см2 /сек.).
При выращивании эпитаксиальных пленок недостатком метода является то, что все посторонние примеси, присутствовавшие на поверхностях пластин, переходят в раствор и внедряются в растущий кристалл. Преимуществом метода считается то, что легко можно получить плоскопараллельную конфигурацию, которая при равномерной температуре нагрева обеспечивает рост пленки равномерной толщины.
1.1.2. Выращивание монокристаллов из паровой фазы.
До настоящего времени широко распространено мнение, что выращивание крупных монокристаллов (весом в десятки или сотни граммов) из паровой фазы не может иметь практического использования ввиду малых скоростей роста, присущих этому методу. Поэтому процессы роста из паровой фазы считаются применимыми лишь для выращивания эпитаксиальных пленок и в отдельных случаях для получения, например, небольших пластинчатых монокристаллов самых различных веществ. Высокопроизводительные методы выращивания монокристаллов из расплавов, как правило, не могут обеспечить необходимой высокой однородности свойств при получении диссоциирующих соединений с высокими температурами плавления (главным образом из-за трудности поддержания неизменного состояния равновесия между расплавом и паровой фазой), а также твердых растворов двух полупроводников (из-за оттеснения одного из компонентов). Поэтому для получения монокристаллов таких материалов (например, соединений AII BVI — CdS, ZnS) все более широко используют различные методы выращивания из паровой фазы.
Однако не следует думать, что метод выращивания из паровой фазы автоматически устраняет все причины неоднородности кристаллов. Процессы выращивания монокристаллов из паровой фазы являются не менее чувствительными к колебаниям внешних условий и состава питающей фазы, чем методы выращивания из расплавов. Но влияние этих колебаний может быть значительно сглажено благодаря малым скоростям роста, которые способствую! приближению к равновесию между наращиваемыми слоями кристалла и паровой фазой. Все методы выращивания монокристаллов из паровой фазы (в виде пленок или объемных кристаллов) можно разделить на три большие группы, отличающиеся методом доставки атомов от источника к растущему кристаллу.
1. Состав растущего кристалла практически идентичен составу источника, а паровая фаза состоит только из атомов или молекул, образующих источник и кристалл; процесс состоит из возгонки или испарения с последующей конденсацией паров.
2. Источник состоит из газообразных молекул сложного состава, содержащих атомы кристаллизующегося вещества. Кристалл заданного состава образуется в результате химической реакции, происходящей на его поверхности (или вблизи нее) и приводящей к выделению атомов кристаллизующегося вещества: методы диссоциации или восстановления газообразных химических соединений.
3. Состав паровой фазы отличен от состава кристалла и состава источника; паровая фаза состоит из молекул, образованных атомами вещества источника и атомами посторонних химических элементов, не входящих в состав кристалла. Выделение атомов кристаллизующегося вещества происходит в результате реакции диспропорционирования или диссоциации газообразных молекул: метод реакций переноса (газотранспортных реакций).
Метод конденсации паров компонентов.
Выращивание кристаллов из паровой фазы, образованной атомами или молекулами компонентов, производится преимущественно в замкнутых эвакуированных контейнерах или в вакуумных камерах. Процесс сводится к созданию потока паров, испускаемых источником, нагретым до выбранной температуры возгонки или испарения; пары, пройдя некоторый путь, конденсируются на подложке. Давление насыщенных паров элементарного вещества, образующею одноатомные пары в зависимости от температуры, описывае1ся уравнением Клаузиуса—Клапейрона. Но процесс проводится в динамическом режиме, и реальное давление паров над поверхностью источника описывается выражением:
Р = a0 Р s (6.52)
где Р, — давление насыщенных паров при температуре Tист ,;
a0 — коэффициент аккомодации, представляющий собой отношение числа испарившихся атомов, которые рекон-денсировались на поверхности испарения, к числу атомов, столкнувшихся с ней (a£1).
Скорость испарения с поверхности практически не зависит от давления над ней и определяется ее температурой. Однако часть испарившихся частиц претерпевает соударения с молекулами пара и возвращается на исходную поверхность.
В условиях молекулярного режима скорость испарения связана с упругостью пара выражением
WM = a Ps Ö M/(2 p RT) 6.53
Испарившиеся с поверхности молекулы распределены в телесном угле со. Их распределение зависит от геометрии испарителя и давления паров и является функцией угла со и расстояния от источника г о (рис. 634). Доля молекул, достигающих поверхности конденсации,
Nk =f(w,r0 )+ a Ps (2 p MkT)-1/2 6.54
При этом предполагается, что средняя длина свободного пробега молекул велика по сравнению с расстоянием r0 , т. е. процесс проводится в вакууме. Влияние отдельных факторов на механизм конденсации, который происходит в атомном масштабе, непосредственно исследовать невозможно. Можно только сопоставлять полученные результаты при изменении некоторых условий проведения процесса. Для этого определяем скорость роста кристалла в зависимости от температуры источника, температуры подложки, плотности пучка атомов, угла падения пучка на поверхность конденсации и устанавливаем влияние различных комбинаций этих факторов на скорость роста, микроморфологию поверхности роста и свойства полученных кристаллов.