Реферат: Технология производства полупроводниковых материалов типа А2В6
Процессы кристаллизации из паровых пучков принято характеризовать коэффициентом конденсация а. Коэффициент конденсации определяется как отношение числа атомов, встроившихся в решетку, к числу атомов, достигших поверхности конденсации Процесс конденсации можно разбить на три стадии:
1) первое соударение атомов пара с подложкой, при котором рассеивается большая часть их кинетической энергии;
2) адсорбция атома;
3) перемещение атомов по поверхности, приводящее либо к встраиванию атома г, кристалл, либо к ею повторному испарению. Поэтому величина коэффициента конденсации определяется скоростью рассеяния энергии атома (которая зависит от температуры подложки, от присутствия на ней монослоя «холодных» атомов инертного газа), теплотой адсорбции подложки (влияние чистоты поверхности подложки) и микрорельефом поверхности (плотность мест закрепления атомов в решетку). Величина коэффициента конденсации зависит также от природы атомов.
Таким образом, основными технологическими факторами, определяющими возможность получения методом конденсации монокристаллических образований с контролируемыми свойствами, являются: природа, кристаллографическая ориентация и состояние поверхности подложки, на которую производится наращивание, выбор величины пересыщения и температуры подложки, при которых обеспечивается с одной стороны закономерное встраивание атомов в решетку растущего кристалла, а с другой стороны установление заданного химического состава растущего кристалла.
Управление составом кристалла, который образуется конденсацией паров нескольких элементов, является одной из наиболее трудных задач. Коэффициент конденсации зависит от природы конденсирующихся атомов; значит состав образующегося кристалла не идентичен составу паровой фазы и должен зависеть также от природы подложки. Создание многокомпонентной паровой фазы заданного состава также сопряжено со значительными трудностями.
Как уже отмечалось, отклонения от стехиометрии соединений возникают в результате того, что состав паровой фазы над кристаллом, как правило, не идентичен составу кристалла. Если в качестве источника брать заранее синтезированные кристаллы одного и того же соединения, но с различными отклонениями от стехиометрии, то составы паровой фазы должны быть различными . В результате различия коэффициентов конденсации у разных атомов соединения состав кристалла может оказаться отличным от состава источника. С этой точки зрения выращивание кристаллов в запаянных ампулах со строго локализованной поверхностью конденсации (см. рис. 6.35) имеет преимущества по сравнению со схемой рис. 6.34, где только часть атомов паровой фазы конденсируется на поверхности роста. Чем больше различие в давлении насыщенных паров компонентов, тем труднее -управлять составом паровой фазы, и приходится использовать раздельное испарение (или возгонку) компонентов, кристаллизующегося вещества.
Состав паровой фазы над многокомпонентным кристаллом или над его расплавом при не слишком малых плотностях паровых пучков должен быть различным, ввиду малой скорости диффузионных процессов в кристалле и быстрого выравнивания состава в расплавах.
При испарении бинарного расплава парциальное давление пара компонента в первом приближении принимается пропорциональным его молярной доле в расплаве (закон Рауля):
PA =P0A NA ;
(P0A – PA )/ P0A= DPA / P0A = NB
DPB /P0B = NA (NA –NB =1)
Pобщ =PA +PB =P0A NA +P0B NB ;
PA /PB =NA /NB ·P0A /P0B ;
Следовательно, состав расплава и состав паровой фазы непрерывно изменяются стечением процесса (дистилляция). В этом случае также целесообразно использовать раздельное испарение чистых компонентов.
В настоящее время метод конденсации компонентов полупроводниковых материалов применяют для:
1) изготовления топких эпитаксиальных пленок полупроводниковых элементов и соединений;
2) выращивания крупных монокристаллических слитков соединении, все компоненты которых обладают в технологически приемлемой области температур значительными и сравнимыми давлениями паров;
3) выращивания небольших монокристаллов некоторых полупроводниковых соединений и их твердых растворов.
Метод диссоциации или восстановления газообразных соединений
Источником материала для роста кристалла могут служить легколетучие химические соединения компонентов, которые подвергаются термической диссоциации или восстановлению соответствующим газообразным восстановителем на поверхности роста, например:
SiCI4 + 2H2 ÛSi + 4HCl; SiH4 Û Si + 2H2 .
Процессы кристаллизации осуществляются в этом случае в две последовательные стадии' 1) выделение вещества в результате химической реакции разложения соединения и 2) встраивание атомов в решетку кристалла. Для выделения вещества используются гетерогенные обратимые реакции, константы равновесия которых зависят, как обычно, от температуры и концентраций всех газообразных компонентов. Это означает, что даже при небольших изменениях условий возможен обратный химический процесс, т. е. вместо кристаллизации вещества его растворение. Поскольку при реакции разложения выделяются газообразные продукты, для достижения стационарного, равномерного процесса, их необходимо непрерывно удалять, для чего всегда целесообразно использовать проточные системы.
Количество кристаллизующегося вещества, выделяемое в единицу времени, определяется выходом реакции разложения соединения при данных температуре, концентрациях компонентов реакции и скорости протекания газовой смеси.
Известно, что при реакции, протекающей на поверхности раздела де},\ фаз, всегда наблюдается резкое снижение энергии активации по сравнению с тем же процессом, протекающим целиком в паровой фазе. Поверхность раздела фаз играет в этом случае роль катализатора реакции. Каталитическая активность поверхности зависит от природы вещества и его агрегатного состояния. Так, например, было установлено, что каталитическая активность расплавленною кремния выше его активности в твердом состоянии (при температурах, близких к температуре плавления). Следовательно, можно ожидать, что при идентичных условиях проведения процесса количество вещества, выделяющееся в начальный момент на различных поверхностях (например, германия на германии и на флюорите), может быть различно.
Каталитическая активность кристаллической поверхности данного вещества зависит от состояния этой поверхности, присутствия на ней активных мест. Такими активными местами могут быть, например, места роста (ступеньки и изломы на них), места выхода краевых дислокаций, области скопления примесей, т. е. активными местами, катализирующими химический процесс, являются области поверхности с повышенным значением химического потенциала. Это позволяет считать, что наличие на поверхности роста активных мест может обеспечивать локальный сдвиг равновесия в ту или иную сторону. Такой же локальный сдвиг равновесия реакции может происходить при изменениях концентрации реагентов в слое газовой фазы, примыкающем к поверхности роста.
Взаимосвязь между химическими процессами и процессами кристаллизации в большинстве случаев настолько тесная, что рассматривать химическую реакцию просто как удобное средство доставки кристаллизующегося вещества к растущему кристаллу, по-видимому, нельзя. Химические процессы, вернее их локальные сдвиги вблизи активных мест, оказывают непосредственное воздействие на совершенство растущего кристалла. При изготовлении эпитаксиальных пленок кремния путем разложения хлоридов кремния монокристалличность их возможна только тогда, когда температура подложки превышает .примерно 1050° С; при разложении же иодидов кремния мопокристаллические пленки получаются при температуре 850—900° С. Микроморфология поверхности пленок, выращенных хлоридным методом, изменяется в значительной степени при изменении состава газовой смеси и температуры.
Обычное понятие пересыщения, которое определяет термодинамическую сущность роста кристалла, для роста посредством химических реакций оказывается неприменимым. Определение пересыщения как отношения количества вещества, находящегося в газовой фазе в виде соединения, к равновесному значению давления его пара при температуре подложки, не имеет смысла.
«Строительный материал» кристалла выделяется непосредственно на поверхности роста в результате химической гетерогенной реакции. Поэтому основной характеристикой является изменение общей свободной энергии, равное сумме изменений, соответствующих, с одной стороны, химическому процессу, а с другой стороны, встраиванию в решетку выделившихся на поверхности атомов. Оба слагаемых этой суммы зависят от нескольких химических равновесий и условий закрепления атома в решетке. Следовательно, можно ожидать, что если выделяющиеся атомы занимают на поверхности растущего кристалла положения, не отвечающие условиям энергетического «поощрения» роста, то, они 6}дут удалены с поверхности обратной химической реакцией.
Одним из важнейших показателей процесса роста кристалла является его линейная скорость, котор?