Реферат: Теорема Штольца

которая представляет неопределённость вида .

Полагая в теореме Штольца

xn =1k +2k +…+nk , yn =nk+1 ,

будем иметь

.

Но

(n-1)k+1 =nk+1 -(k+1)nk +… ,

так что

nk+1 -(n-1)k+1 =(k+1)nk +…

и

.

5. Определим предел варианты

,

представляющей в первой форме неопределенность вида , а во второй – вида . Произведя вычитание дробей, получим на этот раз неопределенное выражение вида :

.

Полагая xn равным числителю этой дроби, а yn – знаменателю, применим еще раз ту же теорему. Получим

.

Но ,

а ,

так что, окончательно,

.

Пример 1.

====== ===.

Пример 2.

=

==

==

==

==

==

=.

Пример 3.

=

=.

Теорема Штольца справедлива для последовательностей, но т.к. последовательности есть частный случай функций, то эту теорему можно обобщить для функций.

Теорема.

Пусть функция , причем, начиная с некоторой xk , g(xk +1)>g(xk ), т.е. функция возрастающая.

Тогда,

если только существует предел справа конечный или бесконечный.

Доказательство:

Допустим, что этот предел равен конечному числу k

.

Тогда, по определению предела

или

.

Значит, какой бы ни взять, все дроби

, , …,

лежат между этими границами. Так как знаменатели их, ввиду возрастания g(xn ) вместе с x(n), положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при

.

Напишем тождество(которое легко проверить):

,

К-во Просмотров: 285
Бесплатно скачать Реферат: Теорема Штольца