Реферат: Теорема Штольца

1. Формулировка и доказательство теоремы Штольца.

2. Применение теоремы Штольца:

a) ;

b) нахождение предела “среднего арифметического” первых n значений варианты ;

c) ;

d) .

3. Применение теоремы Штольца к нахождению некоторых пределов отношения последовательностей.

4. Нахождение некоторых пределов отношения функций с помощью теоремы Штольца.

Для определения пределов неопределенных выражений типа часто бывает полезна следующая теорема, принадлежащая Штольцу.

Пусть варианта , причем – хотя бы начиная с некоторого листа – с возрастанием n и возрастает: . Тогда =,

Если только существует предел справа (конечный или даже бесконечный).

Допустим, что этот предел равен конечному числу :

.

Тогда по любому заданному найдется такой номер N, что для n>N будет

или

.

Значит, какое бы n>N ни взять, все дроби , , …, , лежат между этими границами. Так как знаменатели их, ввиду возрастания yn вместе с номером n, положительны, то между теми же границами содержится и дробь, числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при n>N

.

Напишем теперь тождество:

,

откуда

.

Второе слагаемое справа при n>N становится <; первое же слагаемое, ввиду того, что , также будет <, скажем, для n>N . Если при этом взять N >N, то для n>N , очевидно, , что и доказывает наше утверждение.

Примеры:

1. Пусть, например, . Отсюда, прежде всего вытекает, что (для достаточно больших n) , следовательно, вместе с yn и xn , причем варианта xn возрастает с возрастанием номера n. В таком случае, доказанную теорему можно применить к обратному отношению

(ибо здесь предел уже конечен ), откуда и следует, что , что и требовалось доказать.

2. При а>1

Этот результат с помощью теоремы Штольца получается сразу:

3. Применим теорему Штольца к доказательству следующего интересного предложения:

Если варианта an имеет предел (конечный или бесконечный), то этот же предел имеет и варианта

(“среднее арифметическое” первых n значений варианты аn ).

Действительно, полагая в теореме Штольца

Xn =a1 +a2 +…+an, yn =n,

Имеем:

Например, если мы знаем, что ,

то и

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 282
Бесплатно скачать Реферат: Теорема Штольца