Реферат: Теоретические подходы к феномену "математическое мышление"
Исследования многих отечественных и зарубежных психологов показывают, что без целенаправленного развития математического мышления, являющегося одним из важнейших компонентов процесса познавательной деятельности, невозможно достичь эффективных результатов и обучении, систематизации знаний, умений и навыков [1].
К сожалению, единого мнения по вопросу определения понятия математического мышления в психолого-педагогической и методической литературе нет.
При его характеристике возникают сложные вопросы о взаимосвязи этого понятия с понятиями мышление вообще и конкретные виды мышления.
Одни исследователи считают, что математического мышления как такового, обладающего своими специфическими формами мыслительных действий, нет; своеобразие такого мышления связано, по их мнению, лишь с характером собственно математического материала. Другими словами, представители первого подхода отрицают специфику математического мышления (Л.С. Трегуб, Г. Фрейдепталь и др.).
Так, Л.С. Трегуб полагает, что демонстрация "единых принципов человеческого познания означает, что нет особых методов математического мышления" [2, с. 7], своеобразного по методу и по способу своего функционирования. З.И. Слепкань считает неправомерными попытки введения этого понятия с выделением в нем своих особенностей и компонентов и его отождествление с логическим мышлением [3, с. 18], а Г. Фрейдепталь пишет, что пока невозможно убедительно раскрыть суть математического мышления [4, с. 9].
Мы согласны с Л.К. Максимовым [5; 6; 7] в том, что, хотя методы математического мышления сейчас широко применяются в других науках и имеют статус общих методов познания, все-таки оно имеет свои особенности, которые отличают его от мышления в других научных областях. Специфику математического мышления следует искать не в его методах, а в его объектах [8], — так как первые порождаются вторыми, а также "в своеобразии его предметного содержания" [5].
Так, математик и философ Г. Вейль пишет: "В процессе мышления мы пытаемся постичь разумом истину; наш разум стремится просветить себя, исходя из своего опыта. Поэтому, подобно самой истине и опыту, мышление по своему характеру есть нечто довольно однородное и универсальное. Влекомое глубочайшим внутренним светом, оно не сводится к набору механически применяемых правил и не может быть разделено водонепроницаемыми переборками на такие отсеки, как мышление историческое, философское, математическое и другое. Правда, существуют — скорее внешне — некоторые специфические особенности и различия; так, например, процедуры установления фактов в зале суда и в физической лаборатории заметно различаются. Под математическим способом мышления я понимаю, во-первых, особую форму рассуждений, посредством которых математика проникает в науки о внешнем мире — физику, химию, биологию, экономику и т.д. и даже в наши размышления о повседневных делах и заботах, и, во-вторых, ту форму рассуждений, к которой прибегает в своей собственной области математик, будучи предоставленным самому себе" [9].
Второй подход представлен исследованиями Ж. Пиаже и его сторонников (мышление как "биологический процесс") [10]. Согласно этим ученым, под математическим мышлением понимается собственно логико-математическое мышление, имеющее так называемые "абстракции действия". Теория Пиаже включает в себя два основных компонента: учение о функциях интеллекта и учение о стадиях его развития. Развитие детского мышления понимается как смена соответствующих стадий и описывается с помощью понятий логики и математики. Так, например, в дошкольном и школьном возрасте у детей формируются умственные структуры, соответствующие основным математическим структурам (алгебраическая, топологическая, порядка), которые выделены в математике Нурбак. Математические структуры, по мнению Ж. Пиаже, являются формальным продолжением умственных структур. Основу такого соответствия он видит в их генетическом родстве (его источник — абстракции действий) [10]. Таким образом, концепцию Ж. Пиаже можно сформулировать следующим образом: лишь на основе сложившихся умственных структур возможно формирование математического мышления у детей.
Отечественная психология неоднозначно относится к трудам Ж. Пиаже, отмечая в них как сильные, так и слабые стороны. П.Я. Гальперин и Д. Эльконин не согласны ни с тем, что логика является единственным или хотя бы главным критерием мышления, пи с тем, что уровень формально-логических операции составляет высший уровень развития мышления.
Согласно Ж. Пиаже, интеллектуальное, и в частности математическое развитие закапчивается к 15 годам, так как к этому времени все структуры у подростка уже сформированы, Б дальнейшем речь может идти лишь об их конкретизации и наполнении различными знаниями, умениями, навыками и способами деятельности. Однако, как показали исследования И.Я. Каплуновича, после 15 лет математическое развитие продолжается, прежде всего за счет формирования разнообразных связей и отношений между отдельными подструктурами [11].
Л.К. Максимов считает, что этот подход не освещает вопрос о функциональном развитии мышления. Развитие детского мышления понимается как смена стадий развития интеллекта, которые "привязаны" к возрасту. Кроме того, теория Ж. Пиаже "абсолютизирует момент самодвижения" и "недооценивает значение целенаправленных, формирующих воздействий извне", так как определяется только внутренними закономерностями развития ребенка. Несмотря на это, в ней был получен ряд важных результатов. Как отметил Ж. Пиаже, "характерное для юношества рефлексивное мышление зарождается с 11 — 12 лет, начиная с момента, когда субъект становится способен рассуждать гипотетико-дедуктивно" [10]. Третий подход представлен исследованиями Л.Б. Ительсоиа, И.Я. Каплуновича, Д. Нормана, В.А. Тестова, М.А. Холодной и др. о структуре мышления. Так, В.А. Тестов утверждает, что "идея структур, нашедшая свое отражение (и оказавшаяся весьма плодотворной) в многотомном трактате Н. Бурбаки, а также соответствие между математическими структурами и структурами человеческого мышления, обнаруженное школой Ж. Пиаже, послужили побудительными мотивами к радикальной реформе математического образования в 60-70-х годах в школах и вузах как за рубежом, так и в нашей стране... Существенным недостатком в стратегии обучения, проявившимся в ходе реформы, явилось то, что большинство ученых-модернизаторов, опираясь на отдельные результаты Ж. Пиаже, ограничились попытками внедрения в школьную математику только алгебраических, порядковых и топологических структур и не уделили должного внимания другим видам математических структур (комбинаторным, алгоритмическим, образно-геометрическим и т.д.), играющим особую роль в исследовательской активности, в образовании новых понятийных структур" [12].
Современная психология дает все основания полагать, что основами интеллектуальных процессов являются различные сложные познавательные структуры, имеющие разное количество иерархических уровней.
В когнитивной психологии считается установленным фактом, что информация хранится в памяти преимущественно не в виде непосредственных слепков того, что было воспринято, а в виде более или менее обобщенных продуктов умственной переработки воспринятого — репрезентативных когнитивных структур или когнитивных схем,
Репрезентативные когнитивные структуры - это внутренние психологические структуры, которые складываются в процессе жизни и обучения в голове человека, это способ описания и хранения знаний в долговременной памяти. В этих структурах представлена сложившаяся у человека картина мира, общества и самого себя.
В процессе обучения математике у человека складываются специфические когнитивные структуры, являющиеся отражением объективно существующих математических структур. Различают два типа когнитивных структур, формирующихся по "горизонтальному" и "вертикальному" принципу (В.А. Тестов, М.А. Холодная). К первому относятся алгебраические, порядковые и топологические когнитивные структуры, выступающие как прототипы, упрощенные модели математических объектов, прежде всего как комплекс, средства хранения математических знаний. Ко второму — логические, алгоритмические, комбинаторные, образно-геометрические когнитивные схемы, причем они выступают, в первую очередь, как средства, методы математического познания.
В процессе обучения структуры претерпевают изменения. В зависимости от характера последних Д. Норманом были выделены три различные формы научения [12]:
1) наращивание структур — добавление нового знания к уже существующим схемам памяти;
2) создание структур — образование новых понятийных структур, новое осмысление, качественное обновление системы знаний;
3) настройка структур — топкое приспособление знания к задаче.
К этим формам В.А. Тестов добавляет еще одну, фактически рассмотренную Л.Б. Ительсоном:
4) перестройка структур. Эта форма научения состоит из преобразований структур трех типов:
а) переход на более высокую ступень организации, когда сформированная ранее структура становится подструктурой новой, более широкой (например, структура натуральных чисел становится подструктурой рациональных чисел);
б) изменение принципа организации структуры, когда координация (сочетание) частей внутри нее заменяется их субординацией (подчинением) или обратно (например, целые числа и дроби — лишь с определенного момента в обучении целое число становится частным случаем дроби);
в) перецентровка структуры, т.е. выдвижение в качестве существенных тех элементов, которые были второстепенными, и обратно (например, при переходе от изучения равных треугольников к изучению подобных длины соответствующих сторон становятся второстепенными, а величины соответствующих углов — главными признаками).
Несколько иная точка зрения о структуре мышления приводится в исследованиях И.Я. Каплуновича. Согласно его модели, структура математического мышления представляет собой пересечение пяти основных подструктур: топологической, порядковой, метрической, композиционной (алгебраической) и проективной [13].
Топологическая подструктура обеспечивает замкнутость, компактность, связанность осуществляемых мышлением преобразований, непрерывность трансформаций, мысленное выращивание, выделение в представлении требуемого объекта (его образа). Порядковая дает возможность постоянного сопоставления человеком математических объектов и их элементов по таким характеристикам, как больше—меньше, ближе—дальше, часть-целое, изменение направления движения и его характера, положение, форма, конструкция предмета. Метрическая позволяет вычленять в объектах и их компонентах количественные величины и отношения (пропорции, численные значения размеров, углов, расстояний). С помощью алгебраической подструктуры человек осуществляет не только прямые и обратные операции над математическими объектами, расчленение и соединение их составляющих, по и замену нескольких операций — одной из определенной совокупности, объединение нескольких блоков предмета в один, выполнение математических преобразований в любой последовательности. Наконец, проективная подструктура обеспечивает изучение математического объекта или его изображения с определенного самостоятельно выбранного положения, проецирование с этой позиции объекта па изображение (или изображения на объект) и установление соответствия между ними.
Указанные пять подструктур в математическом мышлении человека существуют не автономно, не изолированно, они не равнозначны и не рядоположены, а пересекаются и находятся в определенной зависимости, иерархии по степени значимости и представительности в интеллекте. В соответствии с индивидуальными особенностями та или иная подструктура занимает место главной, ведущей, доминирующей. Она наиболее ярко выражена по сравнению с остальными, более-устойчива и лучше развита. Эту модель структуры мышления мы назовем "направленностью ума".
На наш взгляд, эта модель структуры мышления может оказать помощь в поиске ответов па нелегкие вопросы, связанные с дифференцированным обучением в начальной школе. Она описывает структуру мышления ребенка и предлагает ориентиры для дальнейшей работы в направлении его развития.
Знание индивидуальных доминантных подструктур мышления учащихся может оказать существенную помощь и при организации на уроке групповой работы. Если вместе объединяются дети с разными доминантными подструктурами, то сплоченной работы, единомыслия ожидать от них трудно. Такие группы целесообразно создавать в тех ситуациях, когда дети должны выработать разные точки зрения, разные подходы, разные решения. Помогает такая форма организации и тогда, когда мы хотим, чтобы сверстники помогли своему товарищу принять ИНОЙ взгляд, позицию, другое решение. Собрав в группу детей с одинаковой подструктурой мышления, можно быть уверенным, что они легко и быстро поймут друг друга и их совместная работа будет быстро продвигаться, окажется продуктивной.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--