Реферат: Теория игр и принятие решений
Из примера 1 следует, что
М(зТ ) = М(з(Т)).
Следовательно искомым критерием будет минимум выражения
М(з(Т)) + к D(зТ ).
Замечание. Константу “к” можно рассматривать как уровень не склонности к риску, т.к. “к” определяет “степень возможности” дисперсии Д(зТ ) по отношению к математическому ожиданию. Например, если предприниматель, особенно остро реагирует на большие отрицательные отклонения прибыли вниз от М(з(Т)), то он может выбрать “к” много больше 1. Это придаёт больший вес дисперсии и приводит к решению, уменьшающему вероятность больших потерь прибыли.
При к =1 получаем задачу
По данным из примера 1 можно составить следующую таблицу
Т | pt | pt 2 | М(з(Т))+D(з(Т)) | ||
1 | 0.05 | 0.0025 | 0 | 0 | 500.00 |
2 | 0.07 | 0.0049 | 0.05 | 0.0025 | 6312.50 |
3 | 0.10 | 0.0100 | 0.12 | 0.0074 | 6622.22 |
4 | 0.13 | 0.0169 | 0.22 | 0.0174 | 6731.25 |
5 | 0.18 | 0.0324 | 0.35 | 0.0343 | 6764.00 |
Из таблицы видно, что профилактический ремонт необходимо делать в течение каждого интервала Т* =1.
Критерий предельного уровня.
Критерий предельного уровня не дает оптимального решения, максимизирующего, например, прибыль или минимизирующего затраты. Скорее он соответствует определению приемлемого способа действий.
Пример 3. Предположим, что величина спроса x в единицу времени (интенсивность спроса) на некоторый товар задаётся непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, в дальнейшем возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться очень большими. В обоих случаях возможны потери.
Т.к. определить потери от дефицита очень трудно, ЛПР может установить необходимый уровень запасов таким образом, чтобы величина ожидаемого дефицита не превышала А1 единиц, а величина ожидаемых излишков не превышала А2 единиц. Иными словами, пусть I– искомый уровень запасов. Тогда
ожидаемый дефицит = ,
ожидаемые излишки =.
При произвольном выборе А1 и А2 указанные условия могут оказаться противоречивыми. В этом случае необходимо ослабить одно из ограничений, чтобы обеспечить допустимость.
Пусть, например,
Тогда
= = 20(ln+– 1)
= = 20(ln+– 1)
Применение критерия предельного уровня приводит к неравенствам
ln I – ³ ln 20 – – 1 = 1.996 –
ln I – ³ ln 10 – – 1 = 1.302 –
Предельные значения А1 и А2 должны быть выбраны так, что бы оба неравенства выполнялись хотя бы для одного значения I.
Например, если А1 = 2 и А2 = 4, неравенства принимают вид
ln I – ³ 1.896
ln I – ³ 1.102
Значение I должно находиться между 10 и 20, т.к. именно в этих пределах изменяется спрос. Из таблицы видно, что оба условия выполняются для I, из интервала (13,17)
I | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
ln I – | 1.8 | 1.84 | 1.88 | 1.91 | 1.94 | 1.96 | 1.97 | 1.98 | 1.99 | 1.99 | 1.99 |
lnI– | 1.3 | 1.29 | 1.28 | 1.26 | 1.24 | 1.21 | 1.17 | 1.13 | 1.09 | 1.04 | 0.99 |
Любое из этих значений удовлетворяет условиям задачи.
Принятие решений в условиях неопределённости.