Реферат: Теория относительности
y'=y-Vy t,
z' =z– Vz t,
t' = t, (1.03)
где Vx t, Vy t, Vz t– постоянные, физический смысл которых легко найти: это есть скорость движения штрихованной координатной системы относительно нештрихованной (точнее – составляющие этой скорости в нештрихованной системе).Преобразование (1.03) носит название преобразования Галилея.
Таким образом, старая физика утверждала, что если дана инерциальная система отсчета, то координаты и время во всякой другой системе отсчета движущейся относительно нее прямолинейно и равномерно, связаны с (х, у, z, t) преобразованиями Галилея (с точностью до переноса начала и поворота осей). Преобразование Галилея удовлетворяет принципу относительности в отношении законов механики, но не удовлетворяет ему в отношении законов распространения света.
Действительно, уравнение распространения фронта световой волны меняет в результате преобразования Галилея свой вид. Если бы преобразование Галилея было правильным (а принцип относительности в общей форме – неправильным), то существовала бы только одна инерциальная система в смысле нашего определения, и по измененному виду уравнения распространения фронта волны было бы возможно определить скорость движения (даже равномерного и прямолинейного) всякой другой системы отсчета относительно этой единственной инерциальной системы («неподвижного эфира»). Отрицательный результат многочисленных точнейших опытов, поставленных с целью обнаружения такого относительного движения, не оставляет сомнений в том, что форма закона распространения фронта волны одна и та же во всех неускоренных системах отсчета и что, следовательно, принцип относительности во всяком случае применим и к электромагнитным явлениям.
Отсюда следует, что преобразование Галилея в общем случае неправильно и должно быть заменено другим.
3. Преобразование Лоренца
Преобразование Лоренца показывает, как изменяются расширенные координаты события при переходе от одной инерциальной системы отсчета к другой инерциальной же системе. Пусть инерциальная система «Бета» движется относительно инерциальной системы «Альфа» с постоянной скоростью v, причем ось хβ скользит по оси х, а оси yβ , zβ всегда остаются соответственно параллельными осям yα , zα . Для конкретности будем предполагать, что система «Альфа» связана с ракетой «Альфа», а система «Бета» – с ракетой «Бета». Счет времени в обеих системах условимся вести от того момента, когда их начала координат совпали (иными словами, обе системы отсчета имеют одно и то же «начальное событие» О – прохождение ракеты «Альфа», мимо ракеты «Бета»).
Для упрощения формул единицы времени и длины выбираются таким образом, чтобы скорость света была равна единице и являлась величиной безразмерной. Для этого достаточно, например, выражать промежутки времени в секундах, а расстояния – в «световых секундах» (понимая под «световой секундой» отрезок, проходимый светом в течение одной секунды).
Некоторое событие S характеризуется в системе «Альфа» расширенными координатами xα , yα , zα , tα . Каковы его расширенные координаты xβ , yβ , zβ , tβ в системе «Бета»? Чтобы ответить на этот вопрос, обратимся к пространственно-временному графику, построенному в системе «Альфа» (рис. 2), предполагая, что рассматриваемое событие произошло на оси xα (а значит, и на оси хβ ), так что yα = zα = yβ = zβ =0.
AS – это расстояние события S (точнее, того места, где оно произошло) от ракеты «Альфа», т.е. его пространственная координата хα .
АВ – это расстояние между ракетами в момент tα . Так как ракета «Альфа» удаляется от «Беты» со скоростью v, а в момент tα =0 они были рядом, расстояние AB = vtα .
BS = AS – AB= хα – vtα это расстояние события S от ракеты «Бета», как оценил бы его альфацентрист, которому могло бы даже казаться, что именно данная величина должна служить бетацентристу координатой хβ , события S в системе «Бета». Однако, как мы сейчас увидим, сам бетацентрист с такой оценкой не согласится; поэтому «спорную» величину BS = хα – vtα обозначим пока через x'. Отказ бетацентриста признать величину х' координатой хβ события S в системе «Бета» имеет два веских основания.
Во-первых, по мнению бетацентриста точка В пространственно-временного графика изображает положение ракеты «Бета» отнюдь не в момент события 5, а позже (раз речь идет о хβ координате, а не хα , одновременность следует понимать в смысле системы «Бета»!). С точки зрения бетацентриста, одновременное с событием S положение ракеты «Бета» соответствует точке С (прямая CS параллельна оси нулевого tβ ).
Во-вторых, на этом пространственно-временном графике альфацентриста все расстояния измерены масштабом, покоящимся в системе «Альфа», тогда как при определении координаты хβ надо во всем поступать по правилам системы «Бета». С точки зрения бетацентриста, масштаб альфацентриста не находится в покое, а движется со скоростью v и потому может иметь неправильную длину.
Таким образом, поправки, которые внесет бетацентрист в оценку альфацентриста, сведутся к следующему:
1) к замене отрезка BS отрезком CS, параллельным оси хβ , что равносильно умножению величины х' на некоторый коэффициент k1 , зависящий от угла φ=arctgv, но одинаковый для всех событий.
2) к изменению единицы длины, что также равносильно умножению величины х' еще на один коэффициент k2 , тоже зависящий только от v.
Учитывая обе поправки, мы можем написать:
хβ = k1 k2 х'= k1 k2 (хα – vtα ),
или, рассматривая произведение k1 k2 как новый коэффициент К (зависящий от v),
хβ = K(хα – vtα ).
Полученная формула преобразования координаты х при переходе к другой инерциальной системе отсчета отличается от галилеевской только наличием коэффициента K.
На рис. 2 видно, что при переходе к новой системе отсчета меняется также и временная дата события: в системе «Альфа» событие S произошло в момент tα , а в системе «Бета» – в момент tβ .
Графически tα (временная дата события S в системе «Альфа») выражается отрезком MS, т.е. расстоянием точки S от оси нулевого tα .
Временная дата того же события tβ определяется по часам, покоящимся в системе «Бета». Пространственно – временная трасса этих часов изображается прямой RS, причем точка R соответствует прохождению стрелки этих часов через нуль (в системе «Бета» событие В считается одновременным с начальным событием О). Таким образом, временная дата tβ события S в системе «Бета» соответствует отрезку RS, однако не в том масштабе, в каком tα соответствует расстоянию MS. Ведь секунда по часам, покоящимся в системе «Бета», может существенно отличаться от секунды по часам, покоящимся в системе «Альфа», а каждый физик при измерениях должен полагаться только на часы, неподвижные относительно избранной им системы.
Поскольку единицы длины и времени выбираются не независимо, а с таким расчетом, чтобы скорость света численно равнялась единице (например, единица времени – секунда, а единица длины – световая секунда), они должны изменяться благодаря движению в одинаковое число раз (иначе был бы нарушен принцип постоянства скорости света). Следовательно, поправочный коэффициент k2 , введенный ранее для длин, справедлив также и для отрезков времени.
Что же касается перехода от отрезка NS к отрезку RS, то он, в силу подобия треугольников NRS и BCS, тоже сводится к умножению на введенный уже коэффициент k1 . Отрезок же MN равен vxα (как катет треугольника OMN, в котором tg φ = v). Поэтому
tβ = k2 ∙ RS = k2 ∙ k1 NS= k1 k2 (MS – MN)= k1 k2 (tα -vxα ),