Реферат: Теория относительности
tβ = K (tα -vxα ),
где K = k1 k2 – знакомый уже нам коэффициент, зависящий только от v (в принятой нами системе единиц t и х выражаются в секундах, av– безразмерная величина).
Полученная формула преобразования временной даты события при замене одной инерциальной системы отсчета другой инерциальной же системой противопоставляется галилее-ньютоновскому представлению о единой для всех систем универсальной шкале времени. Эта формула отражает как зависимость хода часов от их движения, так и различие в понимании одновременности.
К полученным нами двум формулам преобразования расширенных координат события
хβ = K(хα – vtα ),
tβ = K (tα -vxα )
могут быть еще добавлены очевидные соотношения
yβ = yα , zβ =zα ,
которые показывают, что при переходе к другой системе, движущейся вдоль оси х, «поперечные» координаты у и z не изменяются.
5. Теория относительности А. Эйнштейна
Альберт Эйнштейн (1879–1955) – физик-теоретик, один из основателей современной физики, лауреат Нобелевской премии, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907–16) теории относительности.
В 1905 г. Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 г. он избран профессором Цюрихского университета, а через два года – Немецкого университета в Праге. В 1912 г. Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 г. принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 г. появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915 г. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.
Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства – времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя «искривление» пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком «искривленном» пространстве, испытывает воздействие первого тела.
Созданная А. Эйнштейном общая теорией относительности является обобщением ньютоновской теории тяготения на основе специальной теории относительности. В основе общей теории относительности лежит принцип эквивалентности – локальной неразличимости сил тяготения и сил инерции, возникающих при ускорении системы отсчета. Этот принцип проявляется в том, что в заданном поле тяготения тела любой массы и физической природы движутся одинаково при одинаковых начальных условиях. Теория Эйнштейна описывает тяготение как воздействие физической материи на геометрические свойства пространства-времени; в свою очередь, эти свойства влияют на движение материи и другие физические процессы. В таком искривленном пространстве-времени движение тел «по инерции» (т.е. при отсутствии внешних сил, кроме гравитационных) происходит по геодезическим линиям, аналогичным прямым в неискривленном пространстве, но эти линии уже искривлены. В сильном поле тяготения геометрия обычного трехмерного пространства оказывается неевклидовой, а время течет медленнее, чем вне поля.
Общая теория относительности привела к предсказанию эффектов (конечной скорости изменения поля тяготения, равной скорости света в вакууме – это изменение переносится в виде гравитационных волн; возможности возникновения черных дыр и др.), которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.
Из уравнений релятивистской механики (как и механики Ньютона) вытекает закон сохранения энергии, для которого получается новое выражение: E=mc2 . Это – знаменитое соотношение Эйнштейна, связывающее массу тела и его энергию. Иногда это соотношение ошибочно истолковывают как указание на возможность взаимных превращений массы и энергии. В действительности же оно означает лишь то, что масса всегда пропорциональна энергии. В частности, наличие у покоящейся частицы массы говорит и о наличии у нее энергии (энергии покоя), что не играет роли в классической механике, но приобретает принципиальное значение при рассмотрении процессов, в которых число и сорт частиц может изменяться и поэтому энергия покоя может переходить в другие формы. В атомных ядрах энергия притяжения частиц приводит к тому, что общая масса ядра оказывается меньше суммы масс отдельных частиц (дефект массы). Установление этого факта явилось одним из важнейших шагов к возникновению ядерной энергетики, так как позволило оценить ту значительную энергию, которая должна высвобождаться при делении тяжелых и слиянии легких ядер.
Наибольшую известность Эйнштейну принесла теория относительности, изложенная им впервые в 1905 г. в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Будучи студентом, Эйнштейн изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное) и как можно экспериментально обнаружить движение относительно эфира. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики. Исходя из невозможности обнаружить абсолютное движение, Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, делавших излишней гипотезу о существовании эфира, которые составили основу обобщенного принципа относительности:
Постулат I. Все тождественные физические явления в инерциальных системах отсчета при одинаковых начальных условиях протекают одинаково. Другими словами, среди ИСО не существует «привилегированной» системы и невозможно обнаружить состояние абсолютного движения.
Этот постулат распространяет принцип относительности Галилея на все явления природы. Он раз навсегда кончает с абсолютным пространством: если все инерциальные системы отсчета равноправны, то среди них нет привилегированной системы отсчета.
Абсолютное же пространство как раз и было привилегированной системой. Точно так лее отпадает и вопрос об «абсолютном» движении (в вакууме), которое подразумевалось как движение относительно абсолютной системы отсчета
Постулат II. Скорость света в вакууме одинакова по всем направлениям и в любой области данной инерциальной системы отсчета и одинакова во всех инерциальных системах отсчета. Часто к этому постулату добавляют еще, что скорость света в вакууме не зависит от скорости источника. Это, однако, сразу следует из постулата II в той форме, в которой он выписан выше.
Действительно, с источником всегда можно связать инерциальную систему отсчета (если он движется неравномерно и по кривой, то мгновенно сопутствующую инерциальную систему). В этой системе источник покоится, а все остальные инерциальные системы движутся относительно пего (а он относительно них). Согласно постулату II скорость света во всех этих системах одинакова, по это и означает, что она не зависит от скорости источника.
Следует четко понимать, что подразумевает постулат II. Для этого представим себе, что в системе К измеряется скорость света следующим образом. Из точки х1 в момент времени t2 посылается вдоль оси х световой сигнал, который приходит в точку х2 в момент времени t2 . Тогда с = (х2 – x1 )/(t2 – t1 ) – Эти же два события –посылка и прием сигнала – рассматриваются из системы К'. Посылка сигнала для наблюдателя из системы К' происходит в точке х1 ' в момент t1 , а прием – в точке х2 ' в момент t2 '. И несмотря на то, что системы К и К' находятся в относительном движении, направленном как раз по общей оси х, х', мы должны получить, что отношение тоже (х2 – x1 )/(t2 – t1 ) равно с. С точки зрения «здравого смысла» такого быть не должно. Но именно этого требует второй постулат.
После того как сформулированы первые принципы теории относительности – два постулата Эйнштейна, – можно сформулировать общую задачу специальной теории относительности. Ее основа – это принцип относительности: равноправие всех специальных систем отсчета по отношению ко всем физическим явлениям. Теория относительности обязана дать такое описание физических явлений, которое было бы одинаковым во всех инерциальных системах отсчета. Но если в нашем распоряжении есть уравнения, описывающие ту или иную группу явлений, то эти уравнения должны иметь одинаковый вид во всех инерциальных системах отсчета (в каждой системе отсчета в своих переменных). Вспомним, что в уравнения механики и электродинамики существенным образом входят координаты и время наступления события. При переходе от одной инерциальной системы к другой координаты и время наступления события преобразуются. Преобразования Галилея изменяют вид уравнений Максвелла, но, поскольку мы хотим сохранить уравнения Максвелла, как правильные уравнения электромагнитного поля, во всех инерциальных системах, нам следует найти такие преобразования координат и времени, которые сохраняют вид максвелловских уравнений. Такими преобразованиями окажутся преобразования Лоренца.
Однако преобразования Лоренца непосредственно вытекают и из постулатов Эйнштейна. Дело в том, что теория Максвелла была построена с самого начала как релятивистская. Внутренняя причина этого состоит в том, что она содержала в себе правильное описание свойств самого релятивистского объекта – света. Таким образом, найдя преобразования координат и времени события, удовлетворяющие постулатам Эйнштейна, мы должны позаботиться о том, чтобы основные уравнения физики были одинаковыми во всех инерциальных системах, т.е. были бы ковариантными по отношению к этим преобразованиям.
Основными законами в механике мы называем уравнения Ньютона, в электродинамике – уравнения Максвелла, в термодинамике – уравнения, выражающие первое и второе начала.
Относительные величины были и в классической физике – например, скорости, координаты, направления скоростей, – но специальная теория относительности добавляет к ним – несколько неожиданно для нашей интуиции – относительность промежутков времени между событиями и относительность длин масштабов (расстояний). Однако это и есть та «цена», которую приходится платить за то, чтобы реализовать принцип относительности по отношению ко всем физическим явлениям.
И все же самое главное в теории относительности, вопреки ее названию, – это совсем не относительность различных величин, т.е. их зависимость от выбора системы отсчета. Суть теории относительности как раз в обратном. Теория относительности показывает, что законы природы в инерциальных системах отсчета не зависят от выбора системы отсчета, не зависят от положения и движения наблюдателя, а результаты измерений в различных системах отсчета могут быть сопоставлены. Говоря философским языком, теория относительности подчеркивает объективный характер законов природы, а вовсе не относительность знания.
Конечно, пытаться изменить исторически сложившееся название – кстати, оно принадлежит не Эйнштейну, а было предложено Планком в 1906 г. – дело безнадежное. Однако есть одна деталь, на которую можно обратить внимание. Спорят, как правильно говорить: «специальная» или «частная» теория. Едва ли этот спор имеет существенное значение. По смыслу речь идет об ограничении теории рамками инерциальных систем отсчета. По существу это ограничение сводится к тому, что теория справедлива в отсутствие полей тяготения или – практически – в слабых полях тяготения. Поэтому самым правильным названием было бы название «ограниченная теория относительности», принятое во французской литературе.