Реферат: Теорія подібностей
Поэтому развитию моделирования весьма способствовал разработанный в СССР метод не точного, а приближенного моделирования, когда соблюдаются не все условия подобия и в модели получается с достаточной для практики точностью приближенное подобие.
Экспериментальная проверка приближенного метода моделирования проведена была в широких пределах М.А.Михеевым и рядом других советских ученых.
Иногда исследователю приходится встречаться с явлениями, настолько сложными и неизученными, что их не удается выразить посредством математических формул и составить уравнение связи между физическими величинами. Для случаев, когда оказывается возможным установить те физические величины, которые должны были бы войти в уравнение связи, Ж.Бертран в 1878 г. предложил метод, позволяющий из соображений о размеренности отдельных членов физического уравнения отгадать вид критериев подобия и подобрать эмпирическое уравнение связи для них. Этот путь менее надежен, и его следует применять только при невозможности вывести уравнения связи.
Так как учение о размерности лежат в основе физических уравнений, то с него мы и начнем изложение учения о подобии.
Математическое и физическое подобие.
Всякое явление природы представляет собой систему материальных тел, которая претерпевает определенное изменение состояния, поскольку в ней протекают различные процессы.
Явлениями, подобными друг другу, называются системы тел, геометрически подобные друг другу, в которых протекают процессы одинаковой природы и в которых одноименные величины, характеризующие явления, относятся между собой как постоянные числа.
Иными словами, можно определить подобие явления так: явление, подобное заданному, может быть получен путем такого его преобразования, когда размер каждой ее величины изменяется в определенное число раз.
Такое преобразование называется подобным преобразованием явления.
Понятие подобного преобразования первоначально возникло в геометрии, где таким путем получаются подобные фигуры и тела; отношение любых сходных отрезков в них равно одному и тому же постоянному числу сl, так что можно сказать, что тело, подобное первоначальному получено путем изображения его в ином геометрическом масштабе.
Понятие «механическое подобие» прежде всего включает в себя геометрическое подобие систем, затем – кинематическое подобие: подразумевается, что в любых сходных точках систем скорости движущихся тел параллельны и пропорциональны друг другу, т.е. что отношения между их скоростями одинаково во всех точках системы. Если система состоит из отдельных дискретных частиц, то у подобных явлений массы тоже относятся между собой как постоянное число; если же имеет место течение сплошного тела, капельной или газообразной жидкости, то плотности и коэффициенты вязкости во всех сходных точках подобных систем имеют постоянное отношение.
Далее понятие механического подобия включает в себя динамическое подобие, т.е. параллельность и пропорциональность сил в сходственных точках.
Тепловое подобие подразумевает пропорциональность друг другу всех характеризующих тепловые явления величин: температур, тепловых потоков, теплоемкостей, коэффициентов теплопроводности и т.д.
Обозначая отношение расстояний между геометрически подобными точками, т.е. сходственных отрезков длин двух подобных систем, через сl, скоростей – сw, масс – сm, сил – сf и т.д., можно дать математическую формулировку понятия подобия в виде следующей системы равенств:
и т.д., где одним и двумя штрихами обозначены первое и второе подобные явления.
Коэффициенты пропорциональности cl, cw и т.д., называются константами подобия. Для каждого рода величин они имеют свою особую численную величину; поэтому константы подобия имеют соответственные подстрочные значки, показывающие, к какого рода величинам они относятся.
Обобщая сказанное, можно подобие явлений определить, как пропорциональность друг другу всех величин, характеризующих явление, причем коэффициент пропорциональности сохраняет постоянное значение во всех точках системы для определенного наименования величин, но является различным для величин разного наименования.
В общем виде переход от величин одного явления к величинам другого, ему подобного, может быть выражен уравнением
.
Это первое основное уравнение теории подобия.
Константы подобия сохраняют свое значение для любых случаев отношения сходственных величин. Например, если и – сходственные отрезки двух подобных систем, имеют место равенства:
,
и, следовательно, отношение величин можно заменить отношением любых других отрезков при условии, что замена эта для любых подобных явлений делается одинаковым образом. Это так называемое правило замещения одних величин другими того же наименования.
Такую замену можно делать для всех других величин, например и.т.д.
В дальнейшем часто будет встречаться дифференциация величин.
На них также можно распространять правило замещения величин. Это правило можно применять, когда рассматриваемая среда предполагается сплошным телом, т.е. когда наблюдатель имеет дело с такими размерами тела, которые в очень большое число раз превосходят расстояния между молекулами δ, так что дискретное строение тела незаметно и может не приниматься во внимание.
По определению, дифференциал функции dy равен производной, помноженной дифференциал независимой переменной dx:
.
Здесь dx – произвольная величина, которая в физике должна лежать в пределах
,