Реферат: Теория вероятностей и математическая статистика
Гипотезу о соответствии группированной выборки показательному распределению с параметром В не отвергаем.
Задача 3.
Проверка гипотезы о равенстве дисперсий:
-
получить 2 случайных числа, распределенных по стандартному нормальному закону с помощью сумм 5 независимых равномерно распределенных на интервале (0, 1) случайных чисел: аналогично, получить 9 случайных чисел, распределенных по стандартному нормальному закону с помощью сумм 9 независимых равномерно распределенных на интервале (0, 1) случайных чисел;
-
проверить гипотезу о равенстве генеральных дисперсий полученных совокупностей при уровне значимости 0.1.
Решение:
Получим 2 случайных числа, распределенных по стандартному нормальному закону с помощью сумм 5 независимых равномерно распределенных на интервале (0, 1) случайных чисел по формуле
, где zi - равномерно распределенные на интервале (0, 1) случайные числа.
Получены следующие числа:
-0,848 |
-1,662 |
Получим 9 случайных числа, распределенных по стандартному нормальному закону с помощью сумм 9 независимых равномерно распределенных на интервале (0, 1) случайных чисел по формуле
, где zi - равномерно распределенные на интервале (0, 1) случайные числа.
Получены следующие числа:
0.885 |
1.25 |
-0.365 |
-1.139 |
0.891 |
-1.176 |
0.237 |
1.807 |
-0.96 |
Проверим гипотезу о равенстве генеральных дисперсий полученных совокупностей при уровне значимости 0.1:
Найдем выборочное среднее первой совокупности по формуле
Найдем выборочное среднее второй совокупности по формуле