Реферат: Теплопроводность через сферическую оболочку
В частности, тепловой поток q 1 через внутреннюю сферу радиусом R 1 и тепловой поток q 2 через наружную сферу радиусом R 2 равны
(2.29)
Все эти три потока создаются одним и тем же источником мощностью P . Поэтому все они равны P и поэтому равны между собой.
. (2.30)
С учётом (2.28) и (2.29) это равенство можно записать в виде:
. (2.31)
Учитывая, что
,
получаем искомую зависимость плотности теплового потока j от радиуса r :
, (2.32)
где C 1 - это константа, определяемая формулой
. (2.33)
Физический смысл полученного результата достаточно ясен: это известный закон обратных квадратов, характерный для задач со сферической симметрией.
Теперь, так как функция j (r ) известна, можно рассматривать уравнение (2.27) как дифференциальное уравнение относительно функции T (r ). Решение этого уравнение и даст искомое распределение температур. Подставив в (2.27) выражение (2.32) и заданную функцию , получим следующее дифференциальное уравнение:
. (2.34)
Данное уравнение решается методом разделения переменных:
.
Интегрирование этого выражения даёт:
Итак, функция T (r ) имеет вид:
. (2.35)
Константы C 1 и C 2 можно определить из граничных условий T (R 1 ) = T 1 ,
T (R 2 ) = T 2 . Подстановка этих условий в (2.35) даёт линейную систему двух уравнений с двумя неизвестными C 1 и C 2 :
. (2.36)
Вычитая из первого уравнения второе, получим уравнение относительно C 1 :
,
откуда
. (2.37)
С учётом этого выражение (2.35) можно записать в виде:
. (2.38)
Теперь первое граничное условие T (R 1 ) = T 1 даёт:
, (2.39)
откуда следует выражение для константы C 2 :
. (2.40)
Подстановка (2.40) в (2.39) даёт окончательное выражение для искомой функции T (r ):
. (2.41)
Зная функцию T (r ), можно из закона Фурье
определить и окончательное выражение для плотности теплового потока j как функции от радиуса r :
. (2.42)
Интересно отметить, что распределение температур не зависит от коэффициента b , но зато плотность потока пропорциональна b .
3 Заключение
В результате проделанной работы выведено дифференциальное уравнение теплопроводности применительно к данным конкретным условиям задачи и получено решение этого уравнения в виде функции T (r ). Разработана программа TSO , рассчитывающая функцию T (r ) и строящая её график для различных задаваемых пользователем параметров задачи . Листинг программы приведен в Приложении А.
Список используемых источников
Нащокин В.В. Техническая термодинамика и теплопередача: Учеб. пособие для вузов. — 3-е изд., испр. и доп. — М: Высш. школа, 1980. — 469 с.
Араманович И.Г., Левин В.И. Уравнения математической физики: М.: Наука, 1969. — 288 стр.
Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика: Учеб. пособие для студентов втузов. — М.: Наука, 1982. — 432с.
Зельдович Б.И., Мышкис А.Д. Элементы математической физики. — М.: Наука, 1973. — 352с.
Приложение А
(обязательное)
Листинг программы TSO
unit Kurs_p;
interface