Реферат: Теплопроводность в сплошных средах и двухфазных, продуваемых и непродуваемых телах (слоях).
В более общем случае, когда естественная конвекция возникает в замкнутом с торцов зернистом слое, коэффициент в формуле (XIII) должен измениться. Кроме того, нарушение устойчивости газовой среды в слое и начало естественной конвекции должно определяться некоторым критическим значением Ra0 , так же, как это имеет место в однофазной среде.
В соответствии с этим формула (XIII) приобретает вид:
j=1+y(Ra-Ra0 ) (XIV)
???????????? ????????? ? ????????? ???? ????? ?????????? ??-?? ???????? ???????????? ?? ?????? ????, ?????????? ???????? ?????????? ????. ? ???? ?????? ???????? Gr ?????????? ????????? ????????:
Теплопроводность в зернистом слое с движущейся
газовой (жидкой) фазой
Для значительной части технологических процессов в стационарном зернистом слое, протекающих с движением через этот слой газа или жидкости, характерно непостоянство температур в объеме слоя как в пространстве, так и во времени. Поток, проходящий через слой, охлаждается или нагревается через стенки аппарата; при этом в объеме слоя может идти вывделение либо поглощение теплоты - стационарные во времени при проведении реакций, в которых зернистый слой имеет функции катализатора или инертной насадки, и нестационарные в процессах адсорбции, десорбции, сушки и других с участием твердой фазы.
?????? ????????? ???? ? ?????????? ????? ???? ??????? ??????? ??? ??????????????? ?????, ? ??????? ?????????? ?????????? ? ????????? ???? ???????????? ? ??????? , ???????, ??? ????? ?????????? ?????. ? ???? ?????? ???????????????? ????????? ??????? ??? ????????????? ???????? ?????? ??? ?????????? ?????????? ??????? ? ?????????????? ??????????? ????????? ???:
где G - массовая скорость газа; lr и ll - коэффициенты теплопроводности газа по главным осям системы координат перепндикулярно и вдоль оси движения среды. Таким образом , для зернистого слоя с движущейся газовой (жидкой) фазой, как и для неподвижной среды, коэффициент теплопроводности определяет интенсивность выравнивания температур в некоторой квазигомогенной среде.
От такой трактовки зернистого слоя приходится в некоторых случаях отказываться, например, при движении потока теплоты навстречу потоку газа и при нестационарном нагревании или охлаждении слоя потоком газа (подробнее эти случаи будут рассмотрены ниже).
В соответствии с аналогией тепло- и массопереноса, перенос теплоты в движущейся через зернистый слой среде подчиняется тем же закономерностям, что и транспорт вещества. Однако то обстоятельство, что теплота в зернистом слое в отличие от вещества распространяется как через жидкую, так и через твердую фазу, приводит к существенному нарушению подобия коэффициентов диффузии и теплопроводности в области малых критериев Рейнольдса. Так, при Reэ <20 составляющая переноса теплоты за счет процессов молекулярной теплопроводности обеих фаз на порядок больше, чем конвективная составляющая.
????? ??????????? ??? ???????????? ???????????????? ?????????? ? ???? ?????????? ?????????:
Величина l0 представляет собой сумму всех компонентов теплопереноса, не зависящих от u (скорости потока). Существенным составляющим в нее входит теплоперенос при неподвижной среде в слое lоэ . При возникновении естественной конвекции, этот компонент теплопереноса также необходимо учитывать.
Вводя критерии Рейнольдса и Прандтля, зависимость (XVI) можно преобразовать к безразмерному виду:
lr /lг = l0 /lг + В Reэ Pr (XVII)
где В = В0 6 (1-e)/4F.
В таком виде зависимость для теплопроводности в зернистом слое предложена в работах многих исследователей. Величины l0 и B могут быть определены из эксперимента.
??? ???????????? ???? ?? ?????????????? ????? ?????????? ????? ????????? ?????????????? ???????? ?????????????, ????????? ? ???????????? ???????????? ????? ????????? ? ???????. ??? ???????????? ????????????? ????? ????? ???????? ?????????, ??????? ????? ??????????? ? ????:
где Nu=ad/lг , а a - коэффициент теплообмена между зернами и газом текущим через слой.
Методы определения коэффициентов теплопроводности в зернистом слое с движущейся газовой (жидкой) фазой
Опубликовано значительное число работ по определению коэффициентом теплопроводности в зернистом слое с принудительной конвекцией газа. Можно выделить несколько типовых методов определения коэффициентов теплопроводности, использованных в этих работах:
I Определение продольного коэффициента теплопроводности l l при встречном направлении газа и теплоты. ????????? ????????? ????????? ???????? ? ??????? ????? ?????????? ???? ??????????, ?? ???????? ???????? ?????, ????????, ???????????? ??????????????????? ??? ???????????? ??????. ?????? ???????? ????????? ?????????, ??????????? ???? ???????? ? ?????????? ???????? ?? ??? ???????? ? ? ??????. ? ???????????? ????????????? ?????????? ????? ??????? ? ????????? (XV) ????????? ???:
Его решение можно представить так: mº-d(lnt)/dx=CP G/ll
Величину ll определяют по графику температуры в слое, построенном в полулогарифмических координатах. Модификация описанного метода-создание спутных потоков теплоты и газа при использовании торцевого холодильника вместо нагревателя.
Эксперимент можно осуществить только в области малых значений Reэ : при больших скоростях газа необходим источник теплоты высокой интенсивности, что может исказить одномерный поток ее. Кроме того, при больших скоростях газа зона теплового влияния источника соизмерима с размером зерна, и принятая квазигомогенная модель слоя нарушается.
II. Определение радиального коэффициента теплопроводности l r при одномерном потоке по радиусу аппарата. ??? ???? ???????? ??????? - ?????????????????? - ?????????? ? ?????? ?? ??? ???????? ???? ???????????? ??????? ?????? ????????; ?????????? ?????? ??????????? ?????. ??????????? ???? ?? ????? ???????????? ?????? ??????????? ?? ??????. ? ???? ?????? ????????????? ??????????? ???? ?? ??????? ????? ??, ??? ??? ?????????????? ??????, ? ??????????? ???????????????? ?????????? ?? ???????:
где Q - общее количество теплоты, передаваемое через слой; L - высота слоя; t1 и t2 - температуры слоя на расстояниях от оси r1 r2 .
III. Совместное определение радиального и продольного коэффициентов теплопроводности в зернистом слое. Определение lr и ll проводят по результатам измерения температур в трубе с зернистым слоем, охлаждаемой снаружи, при параллельном и встречном направлении потоков тепла и газа. В торце цилиндрического аппарата помещен электронагреватель, создающий равномерный тепловой поток. Стенки аппарата охлаждаются интесивным потоком воды. В зернистом слое создается двумерное температурное поле. Каждый опыт проводят при двух направлениях потока газа, имеющего одинаковую скорость.
Практическая часть. Задачи по теплопроводности.
1. Для определения коэффициента теплопроводности сыра методом пластины (см. рис.1.) через слой продукта, имеющего форму диска диаметром 150 мм, толщиной 12 мм, направляют тепловой поток Q=14.8 ккал/час.
Температура обогреваемой поверхности диска 40о С, на охлаждаемой 6о С.
?????????? ??????????? ???????????????? ????. ?????: l=0.30????/?×???×????.
Рис.1. Прибор для определения теплопроводности материала методом пластины.
1-сыр; 2-охладитель; 3-электронагреватель.
Решение
????????? ???????????????? ??? ??????????????? ?????? ????? ??????????? ??????? ??????:
где r - термическое сопротивление стенки.
??????
2. Какой максимальной толщины слой льда может образоваться на поверхности пресного водоема, если средняя температура на верхней поверхности льда будет сохранятся -10о С, ежечасная потеря тепла водой через лед составляет 24.1 ккал/м2 ×час, а коэффициент теплопроводности льда l=1.935 ккал/м×час×град. Какова будет потеря тепла с 1 м2 поверхности льда при толщине его 1.0 м, если температура на верхней поверхности останется прежней? Ответ: d=0.8 м; q=19.3 ккал/м2 час.
Решение
??? ??????????? ??????? ??????:
??? ??? ??????????? ???? ????? ???????????? ?? ??? ???, ???? ?? ?????????? ??????????? ???? ?? ??????????? ??????????? 0о ?, ?? ? ??????????????? ??????:
??? ?????????? ????????????? ????????:
?.?. Dt1 =Dt2 , ?????????????,
3. Для постройки временного жилища у арктической экспедиции имеются в распоряжении фанера сосновая толщиной 5 мм, земля влажная и снег. В какой последовательности следует расположить материалы в конструкции стенки и какие толщины принять для слоя земли и снега если тепловыделения внутри дома соответствует удельному тепловому потоку 50 ккал/м2 ×час, требуемая температура стенки внутри помещения 20о С, а средняя расчетная температура наружной поверхности стенки -45о С. Так как получение земли в арктических условиях затруднительно, то слой земли должен быть минимальным. Определить также, что произойдет если толщина снегового слоя будет взята больше требуемой по расчету.
Для сосновой фанеры принять l=0.092 ккал/м×час×град; для влажной земли l=0.565 ккал/м×час×град; для снега l=0.40 ккал/м×час×град.
Ответ: последовательность расположения материалов: фанера-земля-снег. dземли =0,195 м; dснега =0.360 м.
Решение
??? ??????????? ?????? ????????? ???????????????? ??? ???????????? ???????? ????? ???:
Последовательность слоев, по-видимому, должна быть такова, чтобы снег был как можно дальше от внутренней поверхности стены. Внутренняя поверхность должна быть покрыта фанерой, затем следует земля и снег.
В вышеуказанном уравнении две неизвестные величины - d2 и d3 . Минимальный слой земли d2 должен быть таков, чтобы не происходило таяние снега, иначе земля будет увлажняться и размываться, а толщина слоя снега - уменьшаться до величины, менее расчетной, для этого температура (t3 ) на границе земли с снегом должна быть выше 0о С.
?????????????, ??????????? ??????? ????????? ???? ?????? ????????????? ?????????:
??????
Теперь толщину снега можно найти из уравнения:
??????:
Дальнейшее увеличение толщины слоя снега по расчету не требуется: в случае превышения расчетной толщины снегового слоя при том же размере тепловыделений внутри помещений, распределение температур в стенке изменится в сторону повышения общей разности температур Dt, причем температура на внутренней поверхности снегового слоя будет стремиться расти, а на наружной понизится по сравнению с исходными температурами. Если при d3 =400 мм наружная стенка имеет t=-45o C, то при стационарных условиях:
?????????? ?????? ????? ? ????? ???????????? ?? ?????????? d3 =360??.
4. Для определения теплопроводности жидких тел иногда используют метод шарового бикалориметра (рис.2). Основными частями прибора являются: ядро, внешняя шаровая оболочка и термопара. Для получения в экспериментах величин действительной теплопроводности жидкости должны быть соблюдены условия, при которых влиянием конвекции можно пренебречь. Определить при какой температуре сферического слоя фреона 12 теплопередача в нем будет обуславливаться только теплопроводностью жидкости. Температура горячей поверхности t1 =2o C, температура холодной поверхности t2 =0о С. Ответ: d<2.9 мм.