Реферат: Термическое окисление кремния
В неравновесном случае концентрация окислителя на поверхности твердого тела меньше, чем C*.
Поток F1 определяется разностью между максимальной и реальной поверхностной концентраций окислителя:
F1 = h(C* - C0), где
C0 - поверхностная концентрация окислителя,
h - коэффициент переноса.
Значение концентрации окислителя C0 зависит от температуры, скорости газового потока и растворимости окислителя в SiO2 .
Для того чтобы определить скорость роста окисла, рассмотрим потоки окислителя в объеме окисла F2 и на его границе с кремнием F3. Согласно закону Фика, поток через объем окисла определяется градиентом концентрации окислителя:
F2 = - D(dC/dz) = D(C0 - Ci)/z0 , (1)
где Ci - концентрация окислителя в молекулах на кубический сантиметр при z = z0 ,
D - коэффициент диффузии при данной температуре,
z0 - толщина окисла.
Величина потока F3 на границе окисла с полупроводником зависит от постоянной K скорости поверхностной реакции и определяется как:
F3 = kCi (2)
При стационарных условиях эти потоки равны, так что F3 = F2 = F1 = F. Следовательно, приравняв соотношения (1) и (2), можно выразить величины Ci и C0 через C*:
(3)
Для того чтобы определить скорость роста окисла, представим поток F3 как изменение числа молекул в слое dz0 за время dt. Тогда уравнение потока на границе SiO2 - Si будет иметь следующий вид:
(4)
Скорость роста окисла определяется потоком F3 и количеством молекул окислителя Ni , входящих в единичный объем окисла. Поскольку концентрация молекул SiO2 в окисле равна 2.2*1022 см-3 , то для получения двуокиси кремния требуется такая же концентрация молекул кислородаили в два раза большая концентрация молекул воды.
Соотношение между величинами z0 и t определяется интегралом вида
3. Зависимость толщины окисла от времени окисления
Следовательно, для малых времен окисления толщина окисла определяется постоянной скорости поверхностной реакции K и прямо пропорциональна времени окисления (8). Для больших времен окисления скорость роста зависит от постоянной диффузии D (9), а толщина окисла пропорциональна корню квадратному из времени процесса.
На скорость окисления влияют также ориентация подложки, присутствие паров воды, наличие натрия, хлора и концентрация легирующей примеси в кремнии. На рис. 3 приведена зависимость толщины пленки SiO2 от времени окисления во влажном кислороде при парциальном давлении паров воды 85*103 Па.
Для широкого класса полупроводников и металлов кинетика процесса активного окисления характеризуется в равновесии линейным законом, то в случае пассивного окисления физическая картина процесса усложняется процессом переноса реагента к реакционной поверхности раздела сквозь растущую пленку. При этом кинетика окисления может быть аппроксимирована следующими законами:
· линейным Х(т) = К1 *т; (1)
· параболическим Х2 (т) = К2 *т; (2)
· кубическим Х3 (т) = К3 *т; (3)
· логарифмическим Х(т) = К4 *lg(В*т+ 1); (5)
· обратно логарифмическим K5 /X(т) = А - lg(т) (6)