Реферат: Термодинамический расчет, анализ и оптимизация идеализированного цикла поршневого ДВС
Проверил: А.Х. Шамутдинов
Оценка подпись, дата
г. Омск, 2010
СОДЕРЖАНИЕ (пример)
1.1 Содержание задачи №1 3
1.2 Краткое описание цикла поршневого ДВС 3
1.3 Расчет цикла ДВС 5
1.3.1 Определение параметров характерных точек цикла 5
1.3.2 Расчет термодинамических процессов 7
1.3.3 Расчет характеристик цикла 12
1.3.4 Построение Т-s диаграммы цикла 15
1.4 Оптимизация цикла варьированием заданного параметра 20
Задача № 1
1.1 Содержание задачи (вариант 14)
Для цикла поршневого ДВС, заданного параметрами р1 =0.14 МПа; Т1 = 300 К; ε = 18; λ = 1,3; ρ = 1,48 кг/м3 ; n 1 = 1,34; n 2 = 1,28, определить параметры всех характерных точек цикла, термодинамические характеристики каждого процесса и цикла в целом. Исследовать влияние параметра n1 на величину термического КПД η t и максимальной температуры Т max при варьировании указанного параметра в пределах 20 %. По результатам расчетов построить графики зависимостей η t и Т ma x от варьируемого параметра, на основании которых сделать заключение об его оптимальном значении, принимая за предельно допустимое значение Т ma x величину Тпр = 1600 К. В качестве рабочего тела принимать сухой воздух.
1.2 Краткое описание цикла
Для анализа задан цикл поршневого ДВС со смешанным подводом теплоты, который реализуется в современных быстроходных дизельных двигателях. Подробное описание такого цикла приведено в учебниках [1,3] и др., ниже приведено краткое описание.
На рис. 1 приведена идеализированная p-v диаграмма, наглядно отображающая основные процессы такого цикла. Во время хода впуска (на диаграмме не показан) атмосферный воздух, проходя через систему фильтров и открытый впускной клапан, поступает в цилиндр двигателя. В конце впуска (точка 1 на диаграмме) впускной клапан закрывается, и по мере перемещения поршня к верхней мертвой точке (ВМТ) происходит политропное сжатие воздуха (процесс 1-2). Ввиду быстротечности этого процесса характер его близок к адиабатному, температура воздуха к концу сжатия (точка 2) сильно увеличивается, в этот момент под большим давлением производят впрыск топлива, в мелкодисперсном виде. Топливо при высокой температуре воздуха, в который оно попадает, очень быстро испаряется и самовоспламеняется. Первые порции при этом сгорают практически мгновенно (процесс 3-4).
Для интенсификации процессов топливо часто впрыскивают в специальную предкамеру из жаростойкой стали, имеющую очень высокую температуру. Последующие порции топлива сгорают по мере их попадания в цилиндр во время перемещения поршня от ВМТ к НМТ (нижней мертвой точке). При этом давление в цилиндре практически не изменяется (процесс 3-4). Далее совершается политропное расширение продуктов сгорания (процесс 4-5), по окончании которого, когда поршень приходит в НМТ, открывается выпускной клапан (точка 5) и во время хода выталкивания продукты сгорания выбрасывается в атмосферу. Поскольку суммарная работа процессов всасывания и выталкивания практически равна нулю, идеализируя картину, их заменяют одним изохорным процессом отвода теплоты (процесс 5-1).
1.3 Расчет цикла ДВС *
1.3.1 Определение параметров характерных точек цикла
Точка 1. По формуле (5) из расчёта ДВС находим:
Точка 2 . Из формулы (6) находим . Используя уравнение (6), давление p2 найдем по формуле (8):
.
Величину Т2 находим из уравнения (4):
.
Точка 3 . Из формулы (9) находим
Температуру Т3 находим из уравнения (4):
.
Используя соотношения (12) находим Т3 :
.
Практическое совпадение результатов (невязка около 0,1 % возникает из-за округлений) служит подтверждением безошибочности проведенных вычислений.
Точка 4. Из выражения (10)
.
Температуру Т4 найдем по выражению (13): .
Точка 5. . Давление в точке 5 найдем так же, как находили его для точки 2:
.
Температуру Т5 находим из формулы (4):
.
Полученные результаты заносим в сводную таблицу (табл. 1).
1.3.2 Расчет термодинамических процессов
Рассчитываем теперь процесс 1-2. Это политропный процесс с показателем политропы n1 = 1,34. Чтобы реализовать формулы (14) – (18), сначала по формулам (19) и (20) рассчитываем значения средних теплоемкостей, предварительно рассчитав t1 и t2 :
.
Теплоту процесса 1-2 находим по формуле (14):
,
Работу процесса 1-2 находим по формуле (15):
Изменения внутренней энергии и энтальпии рассчитываем по формулам (16) и (17):
.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--