Реферат: Термодинамический расчет, анализ и оптимизация идеализированного цикла поршневого ДВС
Рассчитаем термический КПД идеализированного цикла с адиабатными процессами сжатия и расширения по формуле (1), приведенной в [4] и принимая в среднем k = 1,39:
.
Термический КПД цикла Карно для того же интервала температур, в котором реализуется реальный цикл по формуле (29), будет:
Результаты расчетов заносим в сводные: табл. 1 и табл. 2:
Таблица 1
Сводная таблица исходных данных и результатов расчета
Наименование | Значения параметров | |||||||||||
р , МПа | ν , м3 /кг | Т , К | S , кДж/кг·К | |||||||||
Параметры точек | 1 2 3 4 5 | 0,14 6,9 8,97 8,97 0,64 | 0,61 0,037 0,037 0,048 0,61 | 300 895,2 1156,2 1477 1359 | 0,05 -0,2 -0,26 2,45 3,11 | |||||||
Наименование | Значения параметров | |||||||||||
q , кДж/кг | l , кДж/кг | Δ u , кДж/кг | Δ h , кДж/кг | Δ S , кДж/кг | ||||||||
Характеристики процессов |
1-2 2-3 3-4 4-5 5-1 | -68 198,4 346,7 77,3 39,3 | -400 0 92 1045 -,117,6 | 435,7 78,4 253.4 -92 -127,6 | 246,5 108,3 200,9 -296,7 -258,6 | -0,35 0,13 0,28 0,4 -0,47 | ||||||
Суммы | 593,7 | 415,4 | 496,5 | 8,4 | 0,01 |
Таблица 2
Результаты расчета
Термический КПД | ηt | 0,9 |
Термический КПД идеализированного цикла Карно | ηt ц | 0,55 |
Термический КПД цикла Карно | ηtk | 0,75 |
Коэффициент заполнения цикла | k | 0,51 |
1.3.4 Построение T-s диаграммы цикла
Чтобы построить T-s диаграмму, выбираем масштабы по осям координат: T t = 10 К/мм; s s = 0,01 кДж/(кг·К) / мм. Изображаем оси T и s , наносим координатную сетку, а затем и характерные точки цикла. Точки 2 и 3, 3 и 4, 5 и 1 соединяем по лекалу кривыми, по характеру близкими к экспонентам, а политропные процессы 1-2 и 4-5 с достаточной точностью можно изображать прямыми линиями (рис. 1П). Чтобы определить коэффициент заполнения цикла, найдем площадь цикла 1-2-3-4-5-1 непосредственно на диаграмме, пересчитывая квадратные сантиметры (на рисунке пронумерованы): Fц = 25,4 см2 .
Площадь описанного цикла Карно рассчитываем, измерив, размеры прямоугольника в сантиметрах: Fк = 8,5·5,9 = 50,2 см2 . Тогда коэффициент заполнения цикла будет
k = Fц / Fк = 25,4/ 50,2 = 0,51
|
1.4 Оптимизация цикла варьированием параметра n1
Используя данные таблицы, строим графики зависимостей: Т max = f (n 1 )
|
и η t = f ( n 1 ):
|
Из рисунков видно, что наибольшую эффективность имеет цикл с n 1 = 1,37. Это и понятно, поскольку при n 1 = k процесс сжатия протекает адиабатно, а адиабатные процессы самые "экономичные". Вывод: оптимальным является значение n 1 = 1,37. При этом T 4 < T пр .
Задача № 2
2.1 Содержание задачи № 2 (вариант 42)
Цикл Ренкина задан параметрами р 1 = 10 МПа; t 1 = 450°С; р 2 = 0,07 МПа. Исследовать влияние параметра t 1 на величину термического КПД цикла ηt и удельный расход теплоты q , рассчитав эти величины при варьировании заданного параметра в пределах 20 %. Построить графики зависимостей η t и q от варьируемого параметра, на основании которых сделать заключение об оптимальном его значении. Краткое описание цикла см. на стр. 13-15.
2.2 Расчет цикла *
Для определения параметров p, v , t , h и s каждой из характерных точек цикла воспользуемся таблицами состояний [5] и известной h-s диаграммой воды и пара.
Точка 1 . Давление и температура здесь заданы: р 1 = 3,494 МПа; t 1 = 273°С. Тогда на пересечении изобары: р = 34,9 бар и изотермы t 1 = 273 °С на h-s диаграмме находим положение точки 1 и по соответствующим изолиниям определяем значения остальных параметров: v 1 = 0,0636 м3 /кг; h 1 = 2900,2 кДж/кг; s 1 = 6,321 кДж/(кг·К). Эти же значения можно определить и по таблицам состояний перегретого пара, применяя двунаправленное линейное интерполирование, подробно описанное в [3] и [4].
Точка 2 . Поскольку процесс 1-2 принимается адиабатным, положение точки 2 находим, проводя вертикальную линию вниз (s = const ) до пересечения с изобарой р = р 2 = 0,27 бар.
_ * В настоящем расчете все исходные параметры умножены на 0,91, чтобы вариант 42 оставался доступным для работы.
По соответствующим изолиниям находим: t 2 = t нас = 66,9 °С, ν 2 = 4,5157 м3 /кг; h 2 = 2117,6 кДж/кг; s2 = s1 = 6,321 кДж/(кг К); x 2 = 0,78. Эти же значения можно рассчитать, пользуясь таблицами насыщенных состояний и определив сначала значение x 2 :
,
после чего и значения других параметров, например:
Параметры остальных точек находим по таблицам насыщенных состояний (по давлениям).
Точка 3 . Давление р 3 = р 2 = 0,27 бар, остальные параметры – это параметры воды на линии насыщения при этом давлении. Из таблицы находим:
t 3 = t нас = 66,9 °С; ν 3 = 0,0010 м3 /кг; h 3 = 280,0 кДж/кг; s 3 = 0,917 кДж/(кг К).
Точка 4 . Давление р 4 = р 1 = 3,494 бар, температура: t 4 = t 3 = 242,4 °С. По этим значениям с помощью таблицы состояний воды следовало бы найти остальные параметры. Однако, учитывая, что величина параметров воды очень мало зависит от ее давления, обычно принимают ν 4 = ν 3 = 0,001 м3 /кг; h 4 = h 3 = 280,0 кДж/кг; s 4 = s 3 = 0,917 кДж/(кг·К).
Точка 5 . Здесь р 5 = р 1 = 3,494 бара, а остальные параметры этой точки – это параметры воды на линии насыщения при этом давлении: t 5 = t нас = 242,4 °С; v 5 = v '= 0,0012 м3 /кг; h 5 = h ' = 1049,3 кДж/кг; s 5 = s ' = 2,724 кДж/(кг·К).
Точка 6 . Давление р 6 = р 1 = 3,494 бар, все же остальные параметры определяются как параметры сухого насыщенного пара при этом давлении. Из таблицы насыщенных состояний воды находим: t 6 = t нас = 242,4 °С; v 6 = v ''= 0,0572 м3 /кг; h 6 = h '' = 2802,5 кДж/кг; s 6 = s '' = 6,126 кДж/(кг·К).
2.3.1 Расчет термического КПД и других параметров цикла
Рассчитываем теперь основные характеристики цикла. Термический КПД цикла по формуле (30):
Удельный расход пара по формуле(31):
Удельный расход теплоты по формуле(32):
Результаты расчетов сводим в итоговую таблицу 1
Таблица 1
Итоговая таблица расчетов
Точка | р , МПа | t , 0 С | ν , м3 /кг | h , кДж/кг | s , кДж/(кг·К) | х |
1 | 3,494 | 273,0 | 0,0636 | 2900,2 | 6,321 | |
2 | 0,027 | 66,9 | 4,5157 | 2117,6 | 6,321 | 0,78 |
3 | 0,027 | 66,9 | 0,0010 | 280,0 | 0,917 | |
4 | 3,494 | 242,2 | 0,0010 | 280,0 | 0,917 | |
5 | 3,494 | 242,2 | 0,0012 | 1049,3 | 2,724 | |
6 | 3,494 | 242,2 | 0,0572 | 2802,5 | 6,126 |
2.4 Результаты варьирования и их анализ
Таблица 2
Результаты расчета основных параметров цикла
К-во Просмотров: 177
Бесплатно скачать Реферат: Термодинамический расчет, анализ и оптимизация идеализированного цикла поршневого ДВС
|