Реферат: Титановые сплавы
Для повышения ресурса необходимо знать величины длительной прочности, ползучести и усталости материалов для соответствующих рабочих температур и срока их службы.
С течением времени, как известно, прочность деталей, работающих под нагрузкой при повышенных температурах, понижается, а следовательно, снижается и запас прочности деталей. Чем выше температура эксплуатации деталей, тем быстрее уменьшается длительная прочность, а следовательно, и запас прочности.
Увеличение ресурса означает и увеличение числа запусков и остановок. Поэтому при выборе материалов необходимо знать их длительную прочность и усталость при циклическом нагружении.
На ресурс также сильно влияет технология изготовления деталей, например наличие остаточных растягивающих напряжений может снижать усталостную прочность в 2 – 3 раза.
Улучшение методов термической и механической обработки, позволяющее получать детали с минимальными остаточными напряжениями, является важным фактором в повышении их ресурса.
Фреттинг-коррозия, возникающая при механическом трении, значительно снижает усталостную прочность, поэтому разрабатываются методы повышения фрикционных свойств, ресурса и надежности (металлизация, смазки типа ВАП и др.).
При использовании методов поверхностного упрочнения (наклеп), создающих в поверхностном слое напряжения сжатия и увеличивающих твердость, повышаются прочность и долговечность деталей, особенно их усталостная прочность.
Титановые сплавы для деталей компрессоров начали применяться в отечественной практике с 1957 г в небольшом количестве главным образом на ТРД военного назначения, где требовалось обеспечить надежную работу деталей с ресурсом 100 – 200 ч.
За последние годы увеличился объем применения титановых сплавов в компрессорах авиадвигателей гражданских самолетов длительного ресурса. При этом потребовалось обеспечение надежной работы деталей в течение 2000 ч и более.
Увеличение ресурса деталей из титановых сплавов достигается путем:
А) повышения чистоты металла, т. е. снижения в сплавах содержания примесей;
Б) улучшения технологии изготовления полуфабрикатов для получения более однородной структуры;
В) применения упрочняющих режимов термической или термомеханической обработки деталей;
Г) выбор рационального легирования при разработке новых более жаропрочных сплавов;
Д) использования стабилизирующего отжига деталей;
Е) поверхностного упрочнения деталей;
Повышение чистоты сплавов.
В связи с увеличением ресурса деталей из титановых сплавов повышаются требования к качеству полуфабрикатов, в частности к чистоте металла в отношении примесей. Одна из наиболее вредных примесей в титановых сплавах – кислород, так как повышенное содержание его может привести к охрупчиванию. Наиболее ярко отрицательное влияние кислорода проявляется при изучении термической стабильности титановых сплавов: чем выше содержание кислорода в сплаве, тем быстрее и при более низкой температуре наблюдается охрупчивание.
Некоторая потеря прочности за счет снижения вредных примесей в титане с успехом компенсируется повышением в сплавах содержания легирующих элементов.
Дополнительное легирование сплава ВТ3-1 (в связи с повышением чистоты губчатого титана) позволило значительно повысить характеристики жаропрочности сплава после изотермического отжига: предел длительной 100-ч прочности при 400° С повысился 60· до 78· Па и предел ползучести с 30· до 50· Па, а при 450° С на 15 и 65% соответственно. При этом обеспечено повышение термической стабильности сплава.
В настоящее время при выплавке сплавов ВТ3-1, ВТ8, ВТ9, ВТ18 и др. применяется титановая губка марок ТГ-100, ТГ-105, в то время как ранее для этой цели использовалась губка ТГ-155-170. В связи с этим содержание примесей значительно снизилось, а именно: кислорода в 2,5 раза, железа в 3 – 3,5 раза, кремния, углерода, азота в 2 раза. Можно предположить, что при дальнейшем повышении качества губки твердость по Бринеллю ее в ближайшее время достигнет 80· – 90· Па.
Было установлено, что для повышения термической стабильности указанных сплавов при рабочих температурах и ресурсе 2000 ч и более содержание кислорода не должно превышать 0,15% в сплаве ВТ3-1 и 0,12% - в сплавах ВТ8, ВТ9, ВТ18.
Получение оптимальной микроструктуры.
Как известно, структура титановых сплавов формируется в процессе горячей деформации и в отличие от стали тип структуры не претерпевает существенных изменений в процессе термической обработки. В связи cэтим особое внимание должно быть уделено схемам и режимам деформации, обеспечивающим получение требуемой структуры в полуфабрикатах.
Установлено, что микроструктуры равноосного типа (I тип) и типа корзиночного плетения (IIтип) имеют неоспоримое преимущество перед структурой игольчатого типа (IIIтип) по термической стабильности и усталостной прочности.
Однако по характеристикам жаропрочности микроструктура I типа уступает микроструктурам II и III типа.
Поэтому в зависимости от назначения полуфабриката оговаривается тот или иной тип структуры, обеспечивающий оптимальное сочетание всего комплекса свойств для требуемого ресурса работы деталей.
Повышение прочностных свойств термической обработкой.
Поскольку двухфазные (α+β)-титановые сплавы могут упрочняться термической обработкой, имеется возможность дополнительно повысить их прочность.
Оптимальными режимами упрочняющей термической обработки с учетом ресурса 2000 ч являются:
для сплава ВТ3-1 закалка в воду с температуры 850 – 880° С и последующее старение при 550° С в течение 5 ч с охлаждением на воздухе;
для сплава ВТ8 – закалка в воду с температуры 920° С и последующее старение при 550° С в течение 6 ч с охлаждением на воздухе;