Реферат: Титановые сплавы
Были проведены исследования по влиянию упрочняющей термической обработки на механические свойства и структуру сплава ВТ3-1 при температурах 300, 400, 450° С для сплава ВТ8 за 100, 500 и 2000 ч, а также на термическую стабильность после выдержки до 2000 ч.
Эффект упрочнения от термической обработки при кратковременных испытаниях сплава ВТ3-1 сохраняется до 500° С и составляет 25 – 30% по сравнению с изотермическим отжигом, а при 600° С предел прочности закаленного и состаренного материала равен пределу прочности отожженного материала.
Применение упрочняющего режима термической обработки также повышает и пределы длительной прочности за 100 ч на 30% при 300° С, на 25% при 400° С и 15% при 450° С.
С увеличением ресурса от 100 до 2000 ч длительная прочность при 300° С почти не изменяется как после изотермического отжига, так и после закалки и старения. При 400° С закаленный и состаренный материал разупрочняется в большей степени, чем отожженный. Однако абсолютное значение длительной прочности за 2000 ч у закаленных и состаренных образцов выше, чем у отожженных. Наиболее резко снижается длительная прочность при 450° С, и при испытании в течение 2000 ч преимуществ от термического упрочнения не остается.
Аналогичная картина наблюдается и при испытании сплава на ползучесть. После упрочняющей термической обработки предел ползучести при 300° С выше на 30% и при 400° С – на 20%, а при 450° С даже ниже, чем у отожженного материала.
Также повышается выносливость гладких образцов при 20 и 400° С на 15 – 20%. При этом после закалки и старения отмечена большая вибрационная чувствительность к надрезу.
После длительной выдержки ( до 30000 ч) при 400° С и испытания образцов при 20° С пластические свойства сплава в отожженном состоянии сохраняются на уровне исходного материала. У сплава, подвергнутого упрочняющей термической обработке, несколько снижаются поперечное сужение и ударная вязкость, однако абсолютное значение после 30000-ч выдержки остаются достаточно высокими. С повышением температуры выдержки до 450° С снижается пластичность сплава в упрочненном состоянии после 20000 ч выдержки, поперечное сужение падает с 25 до 15%. Образцы, выдержанные 30000 ч при 400° С и испытанные при той же температуре, имеют более высокие значения прочности по сравнению с исходным состоянием (до нагрева) при сохранении пластичности .
С помощью рентгеноструктурного фазового анализа и электронноструктурного микроисследования установлено, что упрочнение при термической обработке двухфазных (α+β)-сплавов достигается за счет образования при закалке метастабильных β-, α´´- и α´-фаз и распада их при последующем старении с выделением дисперсных частиц α- и β- фаз.
Установлено весьма интересное явление существенного повышения длительной прочности сплава ВТ3-1 после предварительной выдержки образцов при меньших нагрузках. Так, при напряжении 80· Па и температуре 400° С образцы разрушаются уже при нагружении, а после предварительной 1500-ч выдержки при 400° С под напряжением 73· Па они выдерживают напряжение 80· Па в течении 2800 ч. Это создает предпосылки для разработки специального режима термической обработки под напряжением для повышения длительной прочности.
Выбор рационального легирования.
Для повышения жаропрочности и ресурса титановых сплавов применяется легирование. При этом очень важно знать при каких условиях и в каких количествах следует добавлять легирующие элементы.
Для повышения ресурса сплава ВТ8 при 450 – 500° С, когда снимается эффект упрочнения от термической обработки, было использовано дополнительное легирование его цирконием (1%).
Легирование сплава ВТ8 цирконием (1%), по данным позволяет значительно повысить его предел ползучести, причем действие добавки циркония при 500 более эффективно, чем при 450° С. С введением 1% циркония при 500° С предел ползучести сплава ВТ8 за 100 ч увеличивается на 70%, за 500 ч – на 90% и за 2000 ч на 100% (с 13· до 26· Па), а при 450° С – повышается на 7 и 27% соответственно.
Стабилизирующий отжиг.
Стабилизирующий отжиг широко применяется для лопаток турбин ГТД с целью снятия напряжений, возникающих на поверхности деталей при механической обработке. Этот отжиг проводят на готовых деталях при температурах, близких к эксплуатационным. Аналогичная обработка была опробована на титановых сплавах, применяемых для лопаток компрессора. Стабилизирующий отжиг проводили в воздушной атмосфере при 550° С в течении 2 ч и изучали его влияние на длительную и усталостную прочность сплавов Вт3-1, ВТ8, ВТ9, и ВТ18. Было установлено, что стабилизирующий отжиг не влияет на свойства сплава ВТ3-1.
Выносливость сплавов ВТ8 и ВТ9 после стабилизирующего отжига повышается на 7 – 15%; длительная прочность этих сплавов не изменяется. Стабилизирующий отжиг сплава ВТ18 позволяет повысить его жаропрочность на 7 – 10%, при этом выносливость не изменяется. То, что стабилизирующий отжиг не влияет на свойства сплава ВТ3-1, можно объяснить устойчивостью β-фазы вследствие применения изотермического отжига. В сплавах ВТ8 и ВТ9, подвергаемых двойному отжигу, из-за меньшей устойчивости β-фазы происходит достаривание сплавов (при стабилизирующем отжиге), что повышает прочность, а следовательно, и выносливость. Так как механическую обработку лопаток компрессоров из титановых сплавов, на финишных операциях проводят вручную, на поверхности лопаток возникают напряжения, разные по знаку и величине. Поэтому рекомендуется все лопатки подвергать стабилизирующему отжигу. Отжиг проводят при температурах 530 – 600° С. Стабилизирующий отжиг обеспечивает повышение выносливости лопаток из титановых сплавов не менее чем на 10 – 20 %.
Используемая литература.
1. О. П. Солонина, С. Г. Глазунов. «Жаропрочные титановые сплавы». Москва «Металлургия» 1976 г.
2.