Реферат: Топологические пространства
Определение топологического пространства
Напомним классическое определение непрерывности числовой функции f в точке x, восходящее к Коши.
Определение 1 . Функция f называется непрерывной в точке x, если для любого e > 0 существует d = d(e) > 0, такое, что если для точки x' выполнено неравенство | x - x' | < d, то | f (x) - f (x') | < e.
Введенное выше определение допускает модификацию, удобную для дальнейшего изложения.
Определение 1' . Функция f называется непрерывной в точке x, если для любой окрестности U точки f (x) существует окрестность V точки x, такая, что из того, что точка x' принадлежит V, следует, что f (x') принадлежит U.
Нетрудно видеть, что для числовых функций определения 1 и 1' эквивалентны, поскольку, с одной стороны, множество точек x', таких, что | x - x' | < d, является окрестностью точки x, называемой d-окрестностью x (соответственно множество точек y, таких, что | f (x) - y | < < e, является окрестностью точки f (x), называемой e-окрестностью f (x)), а с другой стороны, внутри любой окрестности U точки f (x) содержится e-окрестность для достаточно малого e (соответственно в любой окрестности V точки x содержится d-окрестность для достаточно малого d).
Рассмотрим два множества: X и Y. Говорят, что задано отображение F : X Y, если задано правило (закон), по которому каждому элементу x из X поставлен в соответствие элемент y = F (x) из Y. Числовая функция является наиболее известным примером отображения. В этом случае обычно X = Y = R - множество вещественных чисел (числовая прямая), а закон F задается формулой: например, вещественному числу x ставится в соответствие вещественное число sin x (в этом случае F есть функция "синус").
Понятие отображения определено для любой пары произвольных множеств. Однако можно ли в произвольном случае дать определение непрерывности F по аналогии с определением 1 или определением 1'? Нетрудно видеть, что этого сделать нельзя, поскольку на произвольных множествах нет ни понятия окрестности, используемого в определении 1', ни понятия d-окрестности (e-окрестности), используемого в определении 1. Так что для введения корректного определения понятия непрерывности F мы должны либо ввести предварительно понятие окрестности вообще, либо понятие e-окрестности. На примере числовых функций видно, что e-окрестности являются частным случаем окрестностей вообще, и если мы хотим дать наиболее общее определение непрерывности, мы должны сосредоточить свое внимание на корректном введении понятия просто окрестности точки в произвольном множестве.
Множество, на котором "правильно" введено понятие окрестности, называется топологическим пространством. Подчеркнем: требование, чтобы множество было топологическим пространством, является минимальным для того, чтобы было корректно определено понятие непрерывного отображения. Отметим для полноты, что множество, на котором корректно введено понятие e-окрестности, называется метрическим пространством и метрическое пространство является частным случаем топологического. В настоящей статье мы не будем рассматривать метрические пространства. Это понятие освещается в других статьях настоящего журнала.
В математическом анализе широко используется понятие открытого множества (например) на числовой прямой: множество называется открытым, если для любой его точки достаточно малый интервал с центром в этой точке (то есть e-окрестность для достаточно малого e) целиком входит в это множество. Для открытых множеств выполняются два важных свойства: объединение любого (даже бесконечного) набора открытых множеств есть открытое множество и пересечение конечного числа открытых множеств есть открытое множество. Оказывается, если некоторый набор множеств обладает этими свойствами, то с множествами из указанного набора можно работать во многом так же, как с обычными открытыми множествами
Рассмотрим произвольное множество X.
Определение 2. Набор t подмножеств множества X называется топологией, если он обладает следующими свойствами:
Примером топологического пространства является числовая прямая с множествами, открытыми в обычном смысле. Действительно, вся числовая прямая очевидным образом открыта, пустое множество включают в число открытых по определению (это непротиворечиво, поскольку в пустом множестве нет точек, тогда можно считать, что каждая из них (!) входит в пустое множество с некоторой e-окрестностью). Как уже сказано выше, свойства (ii) и (iii) выполнены. Топологию, состоящую из обычных открытых множеств на числовой прямой, будем называть обычной топологией .
Приведем еще два примера. На любом X рассмотрим топологию, в которой всего два множества: все X и пустое. Такая топология называется тривиальной . Противоположная ситуация - на любом X включим в топологию вообще все подмножества X (в частности, все его точки, то есть одноточечные подмножества), само X и пустое подмножество. Эта топология называется дискретной .
Обратите внимание, что тривиальную и дискретную топологию мы задали описав все входящие в них множества. С обычной топологией мы не смогли это сделать, и нам пришлось описывать ее с помощью свойства, которому удовлетворяют ее множества. Чтобы избежать этого неудобства, было введено понятие базы топологии.
Определение 3. Набор открытых множеств S называется базой топологии t, если любое множество из t есть (возможно, бесконечное) объединение множеств из S.
Базой обычной топологии на прямой являются e-окрестности. Действительно, обычное открытое множество характеризуется тем, что каждая его точка имеет некоторую e-окрестность, входящую в это множество. Так что очевидно, что само множество есть объединение указанных e-окрестностей всех его точек.
Приведем еще два примера. Первый из них - топология Зарисского на числовой прямой - интересен (кроме всего прочего) тем, что возник в реальной математической задаче, а не как экзотический пример для учебника. В эту топологию включены вся прямая и пустое множество, а также все множества на прямой, дополнения до которых состоят из конечного числа точек.
Следующая топология на числовой прямой состоит из всей прямой и пустого множества, а также всех открытых интервалов вида (a, + ?), где a - точка прямой. Эта топология называется правой . Отметим, что в точности аналогично можно задать и левую топологию.
Топология может наследоваться. Например, в плоскости имеется топология, состоящая из обычных открытых множеств (аналогично случаю числовой прямой). Тогда на лежащей в плоскости прямой возникает топология, в которой открытыми множествами являются пересечения с этой прямой множеств, открытых в плоскости. Эта топология называется индуцированной . В рассматриваемом примере индуцированная топология - это обычная топология на прямой.
В некоторых случаях различные топологии на одном и том же множестве можно сравнивать между собой. Говорят, что топология t на X сильнее топологии s на том же множестве, если все множества, входящие в s, входят также и в t. Очевидно, что любая топология сильнее, чем тривиальная, а дискретная сильнее любой топологии. Также понятно, что обычная топология сильнее, чем топология Зарисского и чем правая топология, и в то же время топологию Зарисского и правую топологию сравнить между собой нельзя - ни одна из них не является более сильной, чем другая (более того, докажите, что если некоторое множество числовой прямой входит сразу в обе эти топологии, то это либо вся числовая прямая, либо пустое множество).
Определение 4. Окрестностью точки в топологическом пространстве называется любое открытое множество, содержащее указанную точку.
Очевидно, что в обычной топологии понятие окрестности удовлетворяет данному определению.
Используя введенное определение окрестности, нетрудно доказать следующее свойство открытых множеств любого топологического пространства: множество A открыто тогда и только тогда, когда каждая точка x из A имеет окрестность, целиком входящую в A. Докажите это утверждение самостоятельно. Обратите внимание, что характеристическое свойство обычных открытых множеств на числовой прямой является частным случаем этого утверждения.
Задачи топологии
Пусть задано отображение F: X Y, где X и Y - топологические пространства с топологиями соответственно t и s. Поскольку мы ввели определение окрестности точки в топологическом пространстве, можем дать определение непрерывности F в точке аналогично определению 1'.
Определение 5. Отображение F называется непрерывным в точке x k X, если для любой окрестности U k k s точки f (x) в Y существует окрестность V k t точки x в X, такая, что из того, что точка x' принадлежит V, следует, что f (x') принадлежит U.
Определение 6. Отображение, непрерывное в каждой точке x множества X, называется непрерывным на X.
В случае, когда множество X зафиксировано, будем называть отображения просто непрерывными, не указывая X.