Реферат: Топологические пространства

Теорема. Отображение F : X Y непрерывно тогда и только тогда, когда для любого открытого множества U k s пространства Y его прообраз V = F -1(U) принадлежит t, то есть является открытым множеством топологического пространства X.

Доказательство. Пусть F непрерывно, то есть удовлетворяет определению 6. Выберем открытое множество U в Y. Поскольку U - окрестность каждой своей точки y = F (x), x k V = F -1(U ), то, по определению 5, каждое x имеет окрестность Vx , такую, что F (Vx) K U. Из последнего включения, в частности, следует, что Vx K V, так как, по определению, V есть множество всех точек x из X, таких, что F (x) k U. Тогда Действительно, так как каждое x принадлежит своему Vx , содержит все x, то есть включает в себя V. Кроме того, так как все Vx содержатся в V, то и их объединение содержится в V. Из двух включений и следует равенство Таким образом, V есть объединение открытых множеств Vx , то есть оно само открыто по свойству (ii) топологии.

Теперь пусть для любого открытого множества U топологического пространства Y (то есть U k s) множество V = F -1(U ) открыто в X (то есть принадлежит t). Покажем, что выполнено определение 5 в каждой точке x k X. Выберем произвольную окрестность UF (x) точки F(x) в Y. Это открытое множество, и поэтому Vx = = F -1(UF (x)) открыто в X и при этом по построению F (Vx) = UF (x) . Итак, для любой окрестности UF (x) точки F (x) существует окрестность Vx точки x, такая, что F (Vx) содержится в UF (x) , то есть выполнено определение 5. Теорема доказана.

Эта теорема дает очень простой критерий непрерывности отображений топологических пространств. Он очень полезен даже для случая числовых функций, хотя и не входит в традиционный стандартный курс математического анализа.

Полученная нами теорема также позволяет строить новые топологии следующим образом. Пусть задан некоторый класс отображений F (обозначим этот класс через {F }) из множества X в числовую прямую R с обычной топологией (или в любое другое топологическое пространство - в этом случае конструкция аналогична). Зададим набор t подмножеств в X, включив туда множества вида F -1(U ) для всех открытых множеств U в R и для всех отображений F из {F }, все их объединения и конечные пересечения, а также все X и пустое множество. Полученный набор t будет топологией. При этом по теореме из построения следует, что все отображения из {F } будут непрерывными! Подобные топологии часто используются и оказываются весьма полезными.

Определение 7 . Отображение F из топологического пространства X в топологическое пространство Y называется гомеоморфизмом, если выполнены следующие три условия: (i) F непрерывно; (ii) F взаимно однозначно (то есть для любого y k Y существует x k X, такое, что F (x) = y, и указанное x единственно; в частности, существует обратное отображение F -1: Y X ); (iii) отображение F -1 непрерывно.

Если существует гомеоморфизм F : X Y, то говорят, что X и Y гомеоморфны друг другу. В этом случае мы можем наложить X на Y без самопересечений и разрывов, приклеивая x k X к F (x) k Y. Так что получается, что X и Y устроены одинаково.

Понятия гомеоморфизма и гомеоморфности являются центральными для многих разделов топологии, в которых изучаются характеристики, описывающие гомеоморфные пространства. Поскольку гомеоморфные пространства устроены одинаково (см. выше), то их можно не различать, то есть считать разными экземплярами одного и того же объекта. Существует крылатая фраза, что тополог (математик, занимающийся топологией) - это человек, не отличающий бублик от чайной чашки (задача: постройте гомеоморфизм между бубликом и чашкой с одной ручкой!). Это означает, что наиболее общие (топологические) свойства бублика и чашки одинаковы (они телесны и имеют одну дырку).

Другие разделы топологии изучают характеристики непрерывных отображений и некоторые другие вопросы. При этом часто получаются результаты, важные для приложений. Например, удается вычислить некоторые характеристики непрерывных отображений, входящих в определенные уравнения, которые показывают, имеет ли это уравнение решение. Это очень важно в случаях, когда явно решить уравнение невозможно (не удается найти формулу для решения).

Виды топологии

Итак, в произвольном топологическом пространстве мы можем (в определенных пределах) работать так же успешно, как на числовой прямой, и этим топологические пространства похожи друг на друга. Однако каждое топологическое пространство обладает специфическими свойствами, которые иногда резко отличаются от свойств числовой прямой.

Известны пять так называемых (основных) аксиом отделимости, из которых мы приведем три простейшие. Отметим, что числовая прямая с обычной топологией удовлетворяет всем пяти аксиомам. Пространства, удовлетворяющие только некоторым из них, естественно, отличаются от нее своими свойствами. Итак,

Аксиома Т0 (аксиома Колмогорова). Для любых двух не совпадающих точек хотя бы одна из них имеет окрестность, не содержащую другую точку.

Очевидно, что для тривиальной топологии аксиома Т0 не выполняется: в этой топологии есть ровно одно непустое открытое множество - всё X, поэтому всё X будет единственной возможной окрестностью для любой точки и для произвольной пары точек их "любые" окрестности просто совпадают. Все остальные пространства, описанные выше, этим свойством обладают (докажите!).

Аксиома Т1 . Для любых двух не совпадающих точек каждая из них имеет окрестность, не содержащую другую точку.

Нетрудно видеть, что пространство, удовлетворяющее аксиоме Т1 , удовлетворяет и аксиоме Т0 , а не удовлетворяющее аксиоме Т0 , не удовлетворяет и аксиоме Т1 . Так что пространство с тривиальной топологией не удовлетворяет аксиоме Т1 . Числовая прямая с правой топологией тоже не удовлетворяет Т1 . Действительно, пусть x < y. Тогда, взяв x < a < y, мы получим, что (a, ?) содержит y (то есть является его окрестностью) и не содержит x (отсюда следует выполнение аксиомы Т0). Однако для любого b < x интервал (b, ?) содержит и x, и y, то есть любая окрестность точки x содержит и y.

Отметим, что числовая прямая с топологией Зарисского удовлетворяет аксиоме Т1 . Действительно, для x ? y окрестностью точки x, не содержащей y, является дополнение R \ y, а окрестностью точки y, не содержащей x, является R \ x. Легко видеть, что прямая с обычной и дискретной топологиями удовлетворяют аксиоме Т1 .

Аксиома Т2 (аксиома Хаусдорфа). Для любых двух не совпадающих точек у каждой из них можно выбрать по окрестности так, чтобы эти окрестности не пересекались.

Понятно, что из выполнения аксиомы Т2 следует выполнение аксиомы Т1 , и, значит, если не выполняется аксиома Т1 , то не выполняется и аксиома Т2 .

Числовая прямая с топологией Зарисского не удовлетворяет аксиоме Т2 . Действительно, поскольку в этой топологии открытое множество определяется как множество, дополнение до которого состоит из конечного числа точек, а в прямой число точек бесконечно, то любые два открытых множества (в том числе любые две окрестности) пересекаются по бесконечному числу точек.

Очевидно, что прямая с обычной и прямая с дискретной топологиями удовлетворяют аксиоме Т2 .

Влияние аксиом отделимости на свойства топологических пространств проиллюстрируем на примере понятия предела последовательности, изучаемого в старших классах школы. В топологическом пространстве определение предела выглядит следующим образом (сравните с обычным определением).

Определение 8. Точка x k X называется пределом последовательности точек x1 , x2 , _, xn , _ из X, если для любой окрестности U точки x существует номер N = = N(U ), такой, что для всех n > N точки xn лежат в U.

Например, в обычной топологии на прямой пределом последовательности 1, является точка 0, для "постоянной" последовательности a, a, _, a, _ (a - фиксированное число) предел равен a и последовательность 1, 2, 3, _, n, _ (натуральный ряд) не имеет предела. В обычной топологии предел последовательности может быть только один, если он вообще существует, и он находится как бы рядом с точками последовательности (это верно для любого пространства, удовлетворяющего аксиоме T2).

Для пространств, не удовлетворяющих каким-нибудь аксиомам отделимости, свойства пределов могут быть весьма необычными.

Утверждение 1. В правой топологии на прямой любая точка b < a является пределом "постоянной" последовательности a, a, _, a, _

Действительно, окрестность точки b в правой топологии есть множество вида (c, ?), где c < b. Поскольку b < a, (c, ?) содержит a, то есть все члены последовательности a, a, _, a, _ Таким образом, b - предел.

Теперь рассмотрим прямую с топологией Зарисского. Здесь имеется еще более впечатляющий пример предела последовательности.

Утверждение 2. В топологии Зарисского любая точка x k R является пределом натурального ряда.

К-во Просмотров: 398
Бесплатно скачать Реферат: Топологические пространства