Реферат: Торричелли

Утверждение 1 . Для трех данных точек не может существовать на плоскости больше одной точки, сумма расстояний которой до вершин имеет наименьшее значение.

○ Предположим, что таких точек несколько. Тогда, очевидно, все они будут иметь одинаковые суммы расстояний от трех данных точек. Возьмем две из них М и М1 . Если N есть средина отрезка ММ1 , то заметив, что удвоенная медиана треугольника меньше суммы боковых сторон, мы получим три неравенства:

2 NА < АМ + АМ1 ;

2 NВ < ВМ + ВМ1 ;

2 NС < СМ + СМ1 .

Рис.1.

Отсюда 2(NА + NВ + NС) < АМ + ВМ + СМ + АМ1 + ВМ1 + СМ1 , или NА + NВ + NС < АМ + ВМ + СМ.

Итак, точка N имеет сумму расстояний, меньшую, чем точки М и М1 , что противоречит допущению. ● (Это доказательство дано Н. М. Соловьевым).

Утверждение 2 . Точка Торричелли не может лежать вне треугольника.

Предположим, что искомая точка М лежит вне треугольника и расположена так, как указано на рис. 2а.

Рис. 2

Тогда МА + МВ + МС не может быть наименьшим, так как М1 А + М1 В + М1 С < МА´ + МВ + + МС (где М1 – точка пересечения прямой МС со стороной АВ ). Пусть точка М расположена так, как указано на рис. 9б, то есть точка М расположена внутри угла В1 АС1 . В этом случае МВ +МС > АВ + АС (объемлющая более объемлемой), а поэтому МА +МВ + МС > АВ + АС .

Итак, точка, сумма расстояний которой до вершин треугольника имеет наименьшее значение, лежит либо внутри треугольника, либо совпадает с одной из его вершин.

Перейдем непосредственно к решению задачи о нахождении точки Торричелли.

Пусть Р – произвольная точка внутри треугольника АВС .

Найдем сумму отрезков РА+РВ+РС . (Рис. 3)

Повернем ∆ВРА на угол в 60° вокруг точки В так, чтобы он оказался вне треугольника АВС . Точка А займет положение А1 , не зависящее от выбора точки Р .

Точка Р займет положение Р1 .

РВР1 равносторонний: РР1 = РВ

РА + РВ + РС = А1 Р1 + Р1 Р + РС.

Рис. 3

Наименьшее значение будет для точки Р , лежащей на прямой А1 С . Так как в этом случае Р1 , Р , С лежат на одной прямой, то угол ВРС , смежный с углом равностороннего треугольника, равен 120°; т. к. угол А1 Р1 В , равный 120°, равен АВС , то и угол АРВ = 120°.

Итак, для отыскания точки Р строим на каждой из сторон сегмент, вмещающий угол в 120°. Точка пересечения дуг сегментов – искомая точка.

Точка Р находится внутри треугольника, если среди углов нет угла, равного или большего 120°.

Рассмотрим случаи: а) когда один из углов ∆АВС равен 120°;

б) когда один из углов ∆АВС больше 120°.

К-во Просмотров: 482
Бесплатно скачать Реферат: Торричелли