Реферат: Трехфазный цепи
3.11 Трехфазные цепи.
Трехфазные цепи являются частным случаем многофазных систем , под которыми понимают совокупность нескольких нагрузок и источников питания, имеющих одинаковую частоту и смещенных по фазе на некоторый угол друг относительно друга . Каждая пара источник-нагрузка может рассматриваться как отдельная цепь и называется фазой системы .
Если отдельные фазы системы не соединены между собой электрически (рис. 1 а)), то такую систему называют несвязанной . Несвязанная система не обладает никакими особыми свойствами, и если между фазами отсутствует и магнитная связь, то такая совокупность цепей вообще не может рассматриваться как многофазная.
Соединение фаз системы между собой (рис. 1б)) придает ей особые качества, благодаря которым многофазные системы ( в особенности трехфазные) получили исключительное распространение в области передачи и преобразования электрической энергии. Одним из очевидных преимуществ связанной системы (рис. 1) является сокращение с шести до четырех числа проводников, соединяющих источники с нагрузкой. При благоприятных обстоятельствах это число может быть уменьшено до трех. В дальнейшем мы отметим целый ряд других преимуществ, которым обладают связанные системы.
Любая многофазная система может быть симметричной и несимметричной. Симметрия системы определяется симметрией ЭДС, напряжений и токов. Под симметричной многофазной системой ЭДС, напряжений или токов понимают совокупность соответствующих величин, имеющих одинаковые амплитуды и смещенных по фазе на угол 2 p /m по отношению друг к другу, где m - число фаз системы . Если для обозначения фаз трехфазной системы использовать первые буквы латинского алфавита, то симметричную систему ЭДС можно записать в виде
![]() | Û | ![]() | (1) |
Аналогичные выражения можно написать и для токов и падений напряжения в симметричной трехфазной системе.
Основное свойство симметричных многофазных систем заключается в том, что сумма мгновенных значений величин образующих систему в каждый момент времени равна нулю . Для изображений величин образующих систему это свойство означает равенство нулю суммы фазных векторов . В справедливости этого утверждения легко убедиться на примере трехфазной системы, если в области изображений сложить числа в скобках в правой части выражений (1).
Многофазная система симметрична только тогда, когда в ней симметричны ЭДС, токи и напряжения. Если принять равными нулю внутренние сопротивления источников питания или включить их значения в сопротивления нагрузки, то условие симметрии системы сводится к симметрии ЭДС и равенству комплексных сопротивлений нагрузки. Это условие для трехфазной системы записывается в виде
Z a = Z b = Z c . | (2) |
В дальнейшем мы будем считать, что источники питания являются источниками ЭДС и использовать условия симметрии системы в виде выражений (1) и (2).
В многофазные системы объединяют источники ЭДС и нагрузки. Для обеспечения правильного соотношения сдвига фаз при соединения или связывании системы в общем случае необходимо определить выводы элементов, по отношению к которым выполняются условия (1). Они называются начало и конец фазы источника или нагрузки. Для источников многофазной системы принято за положительное направление действия ЭДС от начала к концу.
На электрических схемах, если это необходимо, начало и конец обозначают буквами латинского алфавита. На рис. 1 а) начала элементов соответствуют индексам XYZ , а концы - ABC . В дальнейшем мы будем использовать строчные буквы для нагрузки, а прописные для источников ЭДС.
Существуют два способа связывания элементов в многофазную систему - соединение звездой и соединение многоугольником. Звезда это такое соединение, в котором начала всех элементов объединены в один узел, называемый нейтральной точкой . Подключение к системе при этом осуществляется концами элементов (рис. 2 а)). Многоугольник это соединение, в котором все элементы объединены в замкнутый контур так, что у соседних элементов соединены между собой начало и конец . С системой многоугольник соединяется в точках соединения элементов. Частным случаем многоугольника является треугольник рис. 2 б).
Источники питания и нагрузки в многофазных системах в общем случае могут быть связаны разными способами.
При анализе многофазных систем вводится ряд понятий, необходимых для описания процессов. Проводники, соединяющие между собой источники и нагрузку, называются линейными проводами , а проводник соединяющий нейтральные точки источников и нагрузки - нейтральным проводом .
Электродвижущие силы источников многофазной системы (eA , E A , EA , eB , E B , EB , eC , E C , EC ), напряжения на их выводах (uA , U A , UA , uB , U B , UB , uC , U C , UC ) и протекающие по ним токи (iA , I A , IA , iB , I B , IB , iC , I C , IC ) называются фазными . Напряжения между линейными проводами (U AB , UAB , U BC , Uac , U CA , UCA ) называются линейными .
Связь линейных напряжений с фазными можно установить через разность потенциалов линейных проводов рис. 1 б) как uAB = uAN + uNB = uAN -uBN = uA -uB или в символической форме
U AB = U A -U B ; U BC = U B -U C ; U CA = U C -U A . | (3) |
Построим векторную диаграмму для симметричной трехфазной системы фазных и линейных напряжений (рис. 3). В теории трехфазных цепей принято направлять вещественную ось координатной системы вертикально вверх.
Каждый из векторов линейных напряжений представляет собой сумму одинаковых по модулю векторов фазных напряжений (U ф = UA = UB =UC ), смещенных на угол 60° . Поэтому линейные напряжения также образуют симметричную систему и модули их векторов (U л = UAB = UBC =UCA ) можно определить как .
Выражения (3) справедливы как для симметричной системы, так и для несимметричной. Из них следует, что векторы линейных напряжений соединяют между собой концы фазных (вектор U CA рис. 3). Следовательно, при любых фазных напряжениях они образуют замкнутый треугольник и их сумма всегда равна нулю . Это легко подтвердить аналитически сложением выражений (3) - U AB + U BC + U CA = U A -U B + U B -U C + U C -U A = 0.
Тот факт, что геометрически векторы линейных напряжений соединяют концы векторов фазных, позволяет сделать заключение о том, что любой произвольной системе линейных напряжений соответствует бесчисленное множество фазных . Это подтверждается тем, что для создания фазной системы векторов при заданной линейной, достаточно произвольно указать на комплексной плоскости нейтральную точку и из нее провести фазные векторы в точки соединения многоугольника линейных векторов.
Из уравнений Кирхгофа для узлов a , b и c нагрузки соединенной треугольником (рис. 2 б)) можно представить комплексные линейные токи через фазные в виде
I A = I ab -I ca ; I B = I bc -I ab ; I C = I ca -I bc . | (4) |
В случае симметрии токов IA = IB = IC = I л и Iab = Ibc = Ica = I ф , поэтому для них будет справедливо такое же соотношение, как для линейных и фазных напряжений в симметричной системе при соединении звездой, т.е . Кроме того, их сумма в каждый момент времени будет равна нулю, что непосредственно следует из суммирования выражений (4).
Перейдем теперь к рассмотрению конкретных соединений трехфазных цепей.
Пусть фазы источника и нагрузки соединены звездой с нейтральным проводом (рис. 4а)). При таком соединении нагрузка подключена к фазам источника и U A = U a , U B = U b и U C = U c. , а I A = I a , I B = I b и I C = I c . Отсюда по закону Ома токи в фазах нагрузки равны
I a = U A /Z a ; I b = U B /Z b и I c = U C /Z c . | (5) |
Ток в нейтральном проводе можно определить по закону Кирхгофа для нейтральной точки нагрузки. Он равен
I N =I a +I b +I c . | (6) |
Выражения (5) и (6) справедливы всегда, но в симметричной системе Z a = Z b = Z c = Z , поэтомуI N =I a +I b +I c = U A /Z a +U B /Z b +U C /Z c = (U A +U B +U C )/Z = 0, т.к. по условию симметрии U A +U B +U C =0. Следовательно, в симметричной системе ток нейтрального провода равен нулю и сам провод может отсутствовать. В этом случае связанная трехфазная система будет передавать по трем проводам такую же мощность, как несвязанная по шести. На практике нейтральный провод в системах передачи электроэнергии сохраняют, т.к. его наличие позволяет получать у потребителя два значения напряжения - фазное и линейное (127/220 В, 220/380 В и т.д.). Однако сечение нейтрального провода обычно существенно меньше, чем у линейных проводов, т.к. по нему протекает только ток, создаваемый асимметрией системы.
При симметричной нагрузке токи во всех фазах одинаковы и смещены по отношению друг к другу на 120° . Их модули или действующие значения можно определить как I = U ф /Z .
Векторные диаграммы для симметричной и несимметричной нагрузки в системе с нейтральным проводом приведены на рис. 4 б) и в).
При отсутствии нейтрального провода сумма токов в фазах нагрузки равна нулю I a +I b +I c =0. В случае симметричной нагрузки режим работы системы не отличается от режима в системе с нейтральным проводом.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--