Реферат: Трикутник Рьоло треугольник Рёло
А1N = r + R
NE = (r + R) / 2 (2)
З урахуванням, що DE = ND = NE, з рівнянь (1) і (2) визначимо
DE = r + R( - 1) – (r + R) /,
або
DE = R( – 1 – ()/2) + r(1 – ()/2) ~ 0,025R + 0,293r (3)
Таким чином, відхилення DE сторони квадрата від ідеальної прямої залежить, у першу чергу від радіуса r і не може бути усуненим, тому що R і r не можуть дорівнюватися нулю.
Окреслення n -кутника складеним обертанням m -кутника Рьоло
Ґрунтуючись на отриманих Францем Рьоло результатах, розглянемо більш загальну задачу обертання m-кутника Рьоло з різними швидкостями навколо центрів обертання для окреслення замкнутої фігури у формі n-кутника (n>m).
Розглянемо кінематику утворення трикутником Рьоло кутів А1В2С3 і А4А1В2. Для того, щоб кут А1В2С3 був утворений вершиною В трикутника Рьоло, необхідно за час t перемістити трикутник по годинниковій стрілці на кут 2π/n навколо центра N, але при цьому прокрутити його проти годинникової стрілки на кут (2π/n) – (2π/m). Визначимо кутові швидкості обертання трикутника Рьоло:
α = (2π/nt) – (2π/mt) = 2π(m – n) / (tmn),
β = 2π/nt,
де α – кутова швидкість обертання трикутника Рьоло навколо центра О1 описаного біля нього кола;
β – кутова швидкість обертання центра О1 навколо центра N.
Установимо, чому дорівнює співвідношення швидкостей:
α / β = 1 – (n / m). (4)
Таким чином, у результаті аналізу утворення чотирикутника за допомогою трикутника Рьоло встановлено, що цей процес є окремим випадком утворення n-кутника в результаті складеного обертання m-кутника. Співвідношення (4) показує, що n-кутник може бути окресленим, якщо на процес обертання центра О1 m-кутника навколо центра N накласти обертання в протилежну сторону m-кутника навколо його центра О1 з кутовою швидкістю α, що відрізняється в n/m раз від кутової швидкості β.
Формула (4) також показує:
1) оскільки n > m, то кутові швидкості α і β завжди будуть протилежні за знаком;
2) трикутник Рьоло при обертанні з різними швидкостями α і β може окреслювати будь-який правильний n-кутник (n > m), наприклад, шестикутник, якщо α = - β, дев’ятикутник, якщо α = -2 β і т.д.;
3) можна замість трикутника Рьоло використовувати інші фігури з m-ним числом кутів;
4) з практичною метою, на наш погляд, замість трикутника Рьоло можна застосовувати сочевицеподібний контур (m=2); інструменти і деталі, що мають цей контур, простіші у виготовленні, менші за габаритами, і, як наслідок, дешевші.
Розрахунок контурів n -кутників, що окреслені трикутником Рьоло
Науковий і практичний інтерес викликає не тільки необхідність обчислювання відхилення DE, але й встановлення координат контурів n-кутників, що окреслені m-кутниками на зразок трикутника Рьоло.
Спочатку визначимо координати будь-якої точки контуру трикутника Рьоло при сталих α і β.
Рис.2. Схема для визначення координат контуру трикутника Рьоло.
Задамо кутом γ точку G на контурі трикутника Рьоло (при подальшому оберті трикутника Рьоло точка G переходить у точку Е контуру чотирикутника). Позначимо центральний ∟ACG=φ. Тоді ∟ABG=φ/2. Хай OG=Rγ. Визначимо Rγ. З трикутників АСЕ’ та АОЕ’:
АЕ’2=6R2-6R2cosφ,
АЕ’2=R2+ Rγ2-2Rrγcosγ,
звідки