Реферат: Трикутник Рьоло треугольник Рёло
З трикутника Е’СВ за теоремою косинусів:
За теоремою синусів з трикутника ОВЕ’ маємо:
Rγ=(BE’ sin(30o+φ/2))/ sin(120o-γ),
звідки
Нехай трикутник АВС обертається навколо центру О з кутовою швидкістю α. У системі координат, що зв’язана з центром О, визначимо координати точки G:
XG=Rγsin(γ-α)
YG=Rγcos(γ-α)
Якщо центр О обертається навколо центру N з кутовою швидкістю β, то точка G переміщується у точку Е’ і у системі координат, що зв’язана з центром N, набуває координати, які можна обчислити за формулами:
XG=rcosβ+ Rγsin(γ-α) (5)
YG=rsinβ+ Rγcos(γ-α). (6)
Визначимо в загальному вигляді відхилення D’E’ (див рис.3).
Рис.3 Схема для визначення відхилення D’E’.
Рівняння прямої v, тобто сторони AB1 n-кутника, до якої належить точка D’, має вигляд:
Y=kX+(R+r). (7)
Як відомо, коефіцієнт k=tg(ω), де ω – кут між прямою v та віссю х. В нашому випадку для окреслення чотирикутника ω=45о, а для n-кутника – ω=180о/n.
Визначимо рівняння прямої u, часткою якої є відхилення D’E’:
Y=k1X+b1, (8)
k1=tg(ψ)=tg(ω+90o)=-ctg(ω)=-1/k.
Координати точки Е’ дозволяють обчислити b1:
b1=YE’-kXE’.
Рівняння (7) та (8) утворюють систему, рішенням якої є координати точки D’:
XD=(kYE’+ XE’+k(R+r))/(k2+1),
YD=(k2YE’+kXE’+k(R+r))/(k2+1).
Таким чином за відомими координатами точок D’ і E’ можемо обчислити відхилення D’E’ за формулою:
Окреслення правильного чотирикутника