Реферат: Тройные и кратные интегралы

Опишем около и цилиндрическую поверхность с образующей, перпендикулярной к плоскости Оху. Она касается области вдоль некоторой линии L, которая делит поверхность, ограничивающую область, на две части: верхнюю и нижнюю. Уравнением нижней поверхности пусть будет , уравнением верхней .

Построенная цилиндрическая поверхность высекает из плоскости Оху плоскую область D, которая является ортогональной проек­цией пространственной области на плоскость Оху, при этом линия L проектируется в границу области .

Будем производить интегрирование сначала по Направлению оси О z . Для этого функция интегрируется по заключен­ному в отрезку прямой, параллельной оси О z и проходящей через некоторую точку Р(х, у) области D (на рис. 1 отрезок ). При данных х и у переменная интегрирования z будет изменяться от - аппликаты точки “входа” () прямой в область , до - аппликаты точки “выхода” () прямой из области .

Результат интегрирования представляет собой величину, зави­сящую от точки Р (х, у ) ; обозначим ее через F(х , у ):

При интегрировании х и у рассматриваются здесь как постоян­ные.

Мы получим значение искомого тройного интеграла, если возьмем интеграл от функции F(х, у ) при условии, что точка Р ( х, у) изменяется по области D, т. е. если возьмем двойной интеграл

Таким образом, тройной интеграл I может быть представлен в виде

Приводя, далее, двойной интеграл по области D к повторному и интегрируя сначала по y, а затем по x, получим

(*)

гдеи - ординаты точек“входа” в область D и“выхо­да” из нее прямой (в плоскости Оху), а a и b - абсциссы конечных точек интервала оси Ох, на который про­ектируется область D.

Мы видим, что вычис­ление тройного интеграла по области производит­ся, посредством трех пос­ледовательных интегриро­вании.

Формула (*) сохраняет­ся и для областей, имею­щих цилиндрическую фор­му, т. е. ограниченных цилиндрической поверхно­стью с образующими, параллельными оси О z , а сни­зу и сверху поверхностями, уравнения которых соответственно и (рис. 2).

Рис.2

Если областью интегрирования служит внутренностьпарал­лелепипеда с гранями, параллельными координатным плоскостям (рис. 3), то пределы интегрирования постоянны во всех трех .интегралах :

В этом случае интегрирование можно производить в любом порядке, пределы интегрирования будут при этом сохраняться.

Если же в общем случае менять порядок интегрирования ( т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной.

Рис.3 Рис.4


А) Пример.

Вычислим тройной интеграл

где - область, ограниченная координатными плоскостями

и плоскостью (пирамида, изображённая на рис.4).

Интегрирование по z совершается от z=0 до Поэтому, обозначая проекцию области на плоскость Oxy через D, получим

Расставим теперь пределы интегрирования по области D - треугольнику, уравнения сторон которого

2. Цилиндрические координаты.

Отнесём область к системе цилиндрических координат , в которой положение точки M в пространстве определяется полярными координатами ее проекции Р на плос­кость Oxy и ее аппликатой (z). Выбирая взаимное распо­ложение осей координат, как указано на рис. 5, уста­новим связь, между декарто­выми и цилиндрическими ко­ординатами точки М, именно:

(*)

Рис.5

Разобьем область начастичные области тремя системами координатныхповерхностей: которыми будут соответственно круговые цилиндрические поверхности, осью кото­рых является ось О z , полуплоскости, проходящие через ось О z , и плоскости, параллельные плоскости Оху. Частичными областями служат прямые цилиндры MN (рис. 5). Так как объем цилиндра MN равен площади основания, умноженной на высоту, то для элемента объема получаем выражение

Преобразование тройного интеграла к цилиндрическим координатам производится совершенно аналогично преобра­зованию двойного интеграла к полярным. Для этого нужно в вы­ражении подынтегральной функции переменные x, y, z заменить по формулам (*) и взять элемент объёма равным

К-во Просмотров: 691
Бесплатно скачать Реферат: Тройные и кратные интегралы