Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора
Прежде чем приступить к рассмотрению центральной предельной теоремы, я считаю нужным сказать о слабой сходимости.
Пусть задана последовательность случайных величин (далее с. в.) , задано некоторое распределение
с функцией распределения
и
— произвольная с. в., имеющая распределение
.
Определение.
Говорят, что последовательность с. в. при
сходится слабо или по распределению к с. в.
и пишут:
, или
, или
,
если для любого такого, что функция распределения
непрерывна в точке
, имеет место сходимость
при
.
Иначе говоря, слабая сходимость — это поточечная сходимость функций распределения во всех точках непрерывности предельной функции распределения.
Свойство 1.
Если , и функция распределения
непрерывна в точках
и
, то
и т.д. (продолжить ряд).
Наоборот, если во всех точках и
непрерывности функции распределения
имеет место, например, сходимость
, то
.
Следующее важное свойство уточняет отношения между сходимостями.
Свойство 2.
1. Если , то
.
2. Если , то
.
Свойство 3.
1. Если и
, то
.
2. Если и
, то
.
Несколько содержательных примеров слабой сходимости я рассмотрю ниже. Но основной источник слабо сходящихся последовательностей и необычайно мощное и универсальное средство для асимптотического анализа распределений сумм независимых и одинаково распределенных случайных величин предоставляет нам центральная предельная теорема.
Я буду называть следующее утверждение «ЦПТ Ляпунова» (А. М. Ляпунов: 1901), но сформулирую и докажу теорему Ляпунова только в частном случае, т.е. для последовательности независимых и одинаково распределенных случайных величин.
Центральная предельная теорема.
Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией:
. Обозначим через
сумму первых
случайных величин:
.
Тогда последовательность случайных величин слабо сходится к стандартному нормальному распределению.
Доказательство.
Пусть — последовательность независимых и одинаково распределенных случайных величин с конечной и ненулевой дисперсией. Обозначим через
математическое ожидание
и через
— дисперсию
. Требуется доказать, что
Введем стандартизированные случайные величины — независимые с.в. с нулевыми математическими ожиданиями и единичными дисперсиями. Пусть
есть их сумма
. Требуется доказать, что
Характеристическая функция величины равна
Характеристическую функцию с.в. можно разложить в ряд Тейлора, в коэффициентах которого использовать известные моменты
,
. Получим
--> ЧИТАТЬ ПОЛНОСТЬЮ <--