Реферат: Управление большими системами
Теория автоматического управления разрабатывалась главным образом применительно к производственным процессам и техническим устройствам, о которых известны принципы их организации, структура составляющих устройств элементов, порядок связей между ними, закономерности взаимодействия и основные параметры. Такие системы легко поддаются строгому математическому описанию, их можно однозначно формализовать и управлять на основе определенных алгоритмов. Однако современная техника автоматического управления все чаще сталкивается с задачами управления большими системами, к которым ввиду их чрезвычайной сложности такой подход оказывается неприменимым.
Рис. 11. Взаимосвязи между компаниями, входящими в Северо-восточную энергосистему (по А. Коуту, 1970):
/—«Онтарио Хайдро», 2— «Найэгара Моухок», 3 — «Пенсильвания-Нью-Джер-си Мэриленд», 4 — «Консолидэйтед Эдисон К°», 5 — «Конвекс», 6 — «Лонг Айленд Лайтинг», 7 — «Нью-Инглед электрик систем», 8 — «Нью-Йорк гэс энд электрик корпорейшн», 9 — «Сентрал Хадсон гэс энд электрик корпореишн», 10 — «Орэндж энд Роклэнд ютилити инкорпорейтед», 11 — «Бостон Эдисон», 12 —«Нью Бэлфорд гэс энд электрик», 13 — «Монтеан электрик», 14 — «Дейтронт Эдисон», 15 — «Консамерс пауэр», 16 — «Хайдро Квебек», 17— «Сентрал Мейн пауэр»
В результате сложные большие системы часто оказываются неуправляемыми и в них могут возникать непредвиденные «стихийные» изменения, порой принимающие катастрофический характер.
Ярким примером такой катастрофы может служить выход из строя грандиозной североамериканской энергосистемы Кэнюз (от первых букв слова Canada, Unated States). Эта чрезвычайно большая система образовалась на основе соглашений между десятками частных корпораций, фирм и компаний с участием государственных организаций. О сложности ее внутренних связей дает представление рис. 11. Расстройство деятельности такого «невидимого робота» (А. Коут, 1970) привело к тому, что с вечера 9 ноября 1965 г. до утра 10 ноября десятки миллионов жителей на громадной территории США и Канады, включая такой гигантский город, как Нью-Йорк, оказались в темноте с парализованным энергохозяйством. Внезапно остановилось метро с 600000 пассажиров, которые стали выбираться через тоннели. Однако в полночь еще 10000 из них не могли выйти из вагонов, а 700 оказались в поезде, остановившемся над рекой. Застряли между этажами лифты в небоскребах, прекратилось железнодорожное движение, теле- и радиопередачи, подача газа, работа водопровода, прервалась телефонная и телеграфная связь и т. д. Все началось с того, что одна перегруженная северная линия была выключена защитным реле.Электроэнергия устремляясь по другим линиям, работавшим на пределе, выключила и их одну за другой. В результате подскочила нагрузка на линии, связывающей северную группу с электростанциями других компаний, что вызвало последовательный разрыв соединений между ними. Прекращение взаимной компенсации потребления энергии, резкие колебания нагрузки и нарушение синхронности в работе генераторов разных электростанций привело к ряду крупных аварий, которые в конечном итоге вывели из строя всю систему энергоснабжения. Большая система оказалась неуправляемой.
Особенность больших систем состоит не только в очень большом количестве элементов, но и во множестве разнообразных связей между ними, образующих иерархию подсистем, структура которых может изменяться в зависимости от многих условий. Поэтому управление такой системой на основе строгого математического описания практически невозможно, так как все эти условия нельзя предусмотреть, а если даже удалось бы их принять во внимание, то объем необходимых вычислений оказался бы непомерным, требующим работы самых быстродействующих ЭЦВМ в течение многих лет для выдачи командного сигнала. Поэтому управление большими системами в отличие от управления обычными, допускающими поэлементное математическое описание строится на основе специальных методов теории операций и сетевого моделирования, теории массового обслуживания и статистического моделирования.
Теория операций исследует принципы оптимального управления деятельностью коллективов, составляющих большую систему, которая стремится к достижению определенного результата. Примерами операций больших систем может служить борьба с эпидемией, наступление на фронте, строительство нового города и т. д. Оптимальность управления операцией оценивается по критерию ее эффективности, определение которого составляет важную, но не всегда ясную задачу исследования. Так, в приведенных примерах не вызывает сомнений, что эффективность противоэпидемических мероприятий выражается прекращением заболеваний, а эффективность сражения с войсками противника—победой. Однако критерии эффективности градостроения могут быть разные в зависимости от задач обеспечения жилплощадью определенных контингентов населения или оптимального расположения жилых массивов относительно производственных комплексов или максимального использования ограниченных участков застройки и т. д.
Оптимальный план управления операцией вырабатывается путем анализа ее математической модели. Такие модели имеют характер сетей, в которых отдельные компоненты операции изображаются в виде связок сети. Сетевое моделирование представляет операцию в форме ориентированного конечного графа. Каждое ребро графа представляет собой процессы, позволяющие перейти от одного этапа операции как события, обозначенного соответствующей вершиной графа, к следующему. Если такой сетевой график организует только сроки проведения операции, то- каждое ребро графа получает временную характеристику, если, кроме того, на учет берется рациональное использование материальных ресурсов и другие показатели, то вводятся дополнительные характеристики.
Сетевые модели могут иметь фиксированную каноническую структуру, когда во всех вершинах графа выполняется логическая операция «и», т. е. для осуществления события необходимо завершение всех обусловливающих процессов. Возможна и переменная (альтернативная) структура сети, когда на некоторых вершинах графа выполняется логическая операция «или», т. е. событие может
Рис. 12. Сетевая модель для решения транспортной задачи оптимального распределения грузопотоков в сложной системе путей (пояснения в тексте)
осуществиться при завершении лишь одного из нескольких обусловливающих процессов. Все параметры сети могут существенно изменяться при функционировании большой системы в режиме оперативного управления, когда на основании сравнения планируемого хода операции с ее фактическим состоянием производится коррекция;
управляющих воздействий.
Типичным примером сетевого моделирования с использованием:
графов может служить транспортная задача оптимального распределения грузопотоков в сложной системе путей (железнодорожных, автомобильных, авиационных) с учетом их пропускной способности. На рис. 12 показан случай, когда из места отправления (Л) в место назначения (В) можно посылать грузы в разных количествах по разным направлениям через различные промежуточные пункты, •в которых происходит пересечение путей. Такая задача решается на основании исходных данных о количестве груза, подлежащего-транспортировке, и пропускной способности каждого участка пути. между промежуточными пунктами 1 , 2, 3, 4, 5, 6, 7, 8, 9. Составляется математическая модель всей операции в виде системы уравнений, в которых выражается процесс максимизации потока грузов между А и В. По уравнениям этой модели методом линейного программирования находят оптимальное распределение грузопотоков'на участке пути, представленных ребрами графа. Если принять например, общее количество груза в 100 условных единиц, то при значениях пропускной способности, указанных в виде второй цифры, проставленной на каждом участке пути, доля грузопотока для этого участка при его оптимальном распределении во всей транспортной сети показана в виде первой цифры.
Теория массового обслуживания решает задачи согласования вероятностно-связанной деятельности многочисленных компонентов большой системы по временным, пространственным, энергетическим и другим показателям. Задачи такого рода в технических системах большей частью связаны с фактором времени, в частности с такой организацией средств связи, которая обеспечивала бы удовлетворение вызовов, поступающих в случайном порядке от многочисленных абонентов, или с таким взаимодействием станков разной мощности, при котором пропускная способность всей линии была бы максимальной.
Сложность решения задач массового обслуживания связана со случайным характером взаимодействия элементов больших систем, закономерности которого не поддаются аналитической формализации. Поэтому здесь находят применение методы статистического моделирования, в частности так называемый метод Монте-Карло. Используя принципы теории вероятностей, метод Монте-Карло состоит в воспроизведении большого количества реализаций исследуемого случайного процесса для получения численных значений его искомых характеристик.
Многие особенности управления в больших системах связаны с их иерархической структурой. Такая структура складывается в природных системах, как естественный результат расчленения множества взаимодействующих элементов на локальные группы, формирующиеся различием местных условий. Каждая такая группа приобретает некоторые специфические черты своей организации и свойств регулирования происходящих в ней процессов. Так формируются, например, климатические зоны или геологические регионы. Как части большой системы планетарного регулирования они подчиняются его общим закономерностям, но в пределах своего уровня обладают известной степенью автономности.
Иерархическая структура позволяет разделить грандиозную и практически невыполнимую задачу непосредственного управления всеми уровнями подсистем и множествами элементов большой системы из единого центра на последовательные операции задания Целевых функций от уровня к уровню. Вместо того чтобы директор крупного завода давал задание каждому рабочему каждого цеха каждый день, он лишь утверждает планы работы цехов, начальник Цеха организует работу бригад, а бригадир управляет деятельностью членов бригады. При этом решения на каждом уровне принимаются в результате обработки такого объема информации, который вполне доступен принимающему решение, так как на Уровень более высокого ранга управления передается лишь отфильт-- рованная от ненужных деталей, обобщенная информация. Устрой ства автоматического управления большими системами, построенные по иерархическому принципу, выгодно отличаются от устройств прямого централизованного управления реальностью и эффективностью решения сложных управленческих задач. Такое управление более пластично, так как может гибко изменяться на многих уровнях и более надежно, так как ошибки на одном из уровней могут быть исправлены на других уровнях.
Структурные и функциональные особенности организации биологических систем
Определение живых систем как сложных и очень сложных вероятностных кибернетических дает основание для детального анализа их структурной и функциональной организации специальными методами кибернетики.
Самоорганизация и ее структурные основания
Прежде всего следует рассмотреть фундаментальное свойство живого—способность к самоорганизации. Противоречия в определении самоорганизации получили образное выражение в следующем высказывании крупного кибернетика У. Эшби (1966) на специальном симпозиуме по самоорганизующимся системам: «Так как ни об одной системе нельзя утверждать, что она является самоорганизующей и так как выражение «самоорганизующаяся» ведет к укоренению весьма путаного противоречивого представления о данной проблеме, это выражение, вероятно, вообще не следовало бы употреблять». Однако на том же симпозиуме Эшби заявил, что «в настоящее время принципы, лежащие в основе самоорганизующихся систем, известны достаточно полно в том смысле, что над большей частью вопросов приподнята завеса таинственности». Понятие самоорганизации охватывает в наиболее общем виде все специфические свойства жизни—сохранение индивидуальности при непрерывном обмене веществ и энергии с окружающей средой, активация с восстановлением исходного состояния при раздражении, воспроизведение себе подобных при размножении и т. д.
Самоорганизация характерна именно для сложных и очень сложных вероятностных систем. Структурным основанием самоорганизации является множественность элементов и разветвленность связей между ними, ведущих к возникновению целостности, а функциональным основанием — развитие гибкого взаимодействия между элементами по типу обратных связей, направленных на оптимизацию системы. Зачатки самоорганизации можно встретить и в сложных вероятностных системах неживой природы. Например, множество молекул соли, случайно взаимодействующих в растворе, при достижении определенных условий самоорганизуются в кристаллическое тело. Однако вряд ли нужно перечислять различия между ростом кристалла и ростом живого организма. На уровне живого самоорганизация приобретает важную качественную особенность — она становится способом существования этого класса систем. Поэтому некоторые, наиболее общие характерные черты биологической самоорганизации проявляются уже в процессе возникновения жизни и связаны с проблемой ее происхождения.
В настоящее время наиболее обоснованной гипотезой о происхождении жизни является представление А. И. Опарина (1957) о первичной агрегации органических полимеров в коацерватные капли, которые способны к избирательному поглощению определенных соединений из внешней среды, т. е. к зачаточному обмену веществ. Такие коацерватные капли образуются, когда органические молекулы достигают в процессе полимеризации определенных. размеров. Тогда они входят между собой в особые физико-химические отношения, которые дают им возможность выделиться из общего водного раствора.
Обособление системы от окружающей среды составляет существенный признак самоорганизации. В современной цитологии все более распространяется мнение, что комплексные коацерваты составляют основу протоплазмы живых клеток (А. С. Трошин, 1956). Это находит подтверждение и в том, что, применяя физические и химические воздействия, вызывающие вакуолизацию живых клеток, можно было вызвать явления «вакуолизации» в комплексных коа-церватахФункциональные основы самоорганизации
Казалось бы, что обособление от окружающей среды должно приводить к изоляции системы. Однако в данном случае этого не происходит. Наоборот, выделившаяся из однородной среды самоорганизующаяся система начинает с ней активно взаимодействовать. Это обусловлено функциональными особенностями образовавшейся таким путем биокибернетической системы связей.
Взаимодействие коацерватной капли с окружающим раствором вначале имеет характер преимущественного извлечения и концент-рирования в ней высокополимерных соединений. Однако в дальнейшем из множества полимеров внутри капли возникают сложные вторичные структуры, между которыми также происходит физико-химическое взаимодействие. Внутрисистемные процессы связываются с отношениями коацервата и среды и обусловливают непрерывный поток веществ через него — прообраз биологического обмена веществ.
Вся эта сложная эволюция протобионтов наглядно демонстрирует функциональные особенности их химизма, выражающиеся в способности к активному обмену веществ. По-видимому, коацерват-ный агрегат возникает из случайного «зацепления» нескольких макромолекул. Однако его внешние и внутренние связи таковы, что однажды возникнув, он вовлекает в свою структуру все больше мак ромолекул, увеличиваясь в размерах и усложняя свою организацию до какого-то оптимального предела, превышение которого включает тормозные механизмы. Сложившаяся при этом структурная организация определяет направление и объем проходящего через нее потока веществ, который в свою очередь может влиять на структуру через их пластическое обеспечение. При колоссальном разнообразии структурной организации и вещественного состава коацерватных комплексов вероятность возникновения и развития их прогрессивных форм достаточно велика для действия естественного отбора как фактора первичной эволюции.
Обратные связи в живых системах
Важным основанием биологической самоорганизации является обусловленное чрезвычайной разветвленностью структуры исключительное богатство и разнообразие обратных связей на всех уровнях живых систем.
Отрицательные обратные связи обеспечивают стабильность функций организма, постоянство его параметров, устойчивость к внешним воздействиям. Они являются основным механизмом гомео-стаза, энергетического и метаболического баланса, контроля численности популяций, саморегуляции эволюционного процесса.
Положительные обратные связи играют позитивную роль усилителей процессов жизнедеятельности. Особенное значение они имеют для роста и развития. Чем больше живая масса организма, тем больше его ассимиляторные возможности. Примером положительной обратной связи в организме может служить также гуморальная саморегуляция желудочного сокоотделения, когда всасывание продуктов переваривания белков, возбуждая железы, прогрессивно увеличивает переваривание. Вместе с тем положительные обратные связи нередко выступают как механизм так называемого «порочного круга», когда болезнетворные воздействия, нарушающие норму, вызывают в организме изменения, еще более благоприятствующие их действию. Например, сердечная недостаточность ухудшает кровоснабжение миокарда и еще более ослабляет его сокращения. Если отрицательная обратная связь способствует восстановлению исходного состояния, то положительная обратная связь уводит организм и его функции все дальше от исходного состояния.
Взаимодействие положительных и отрицательных обратных связей ярко выступает на примере формирования растительных и животных ценозов. С увеличением их биомассы развитие ценоза усиливается. Однако это усиление имеет место лишь до известных пределов, когда вступает в действие ограничительный механизм саморегуляции и положительная обратная связь сменяется отрицательной. Можно предположить, что биологическая самоорганизация на всех уровнях—метаболическом, клеточном, тканевом, органном, организменном и видовом—начинается на основе механизма положительной обратной связи, на которые затем накладываются ограничения регуляторных отрицательных обратных связей (см. схему).
Взаимодействие положительных (+) и отрицательных (—) обратных связей в системе регуляции динамики численности популяции
Обратная связь приобретает особое значение именно для систем биологического типа потому, что такого рода регулятор автоматически компенсирует любые возмущения, даже такие, природа которых неизвестна. Если в простых системах, структура которых может быть точно описана и поведение однозначно предсказано, возможны и другие способы управления путем одностороннего воздействия на отдельные их элементы и звенья, то в очень сложной вероятностной системе, не поддающейся детальному описанию, это единственный способ эффективного регулирования.
По образному определению Н. Винера (1958), обратные связи в живом организме обеспечивают его способность регулировать будущее поведение прошлым выполнением приказов.
Устойчивое термодинамическое неравновесие
--> ЧИТАТЬ ПОЛНОСТЬЮ <--