Реферат: Управление большими системами

1) наличие свободной энергии, разряжающейся без внешнего воз­действия, т. е. свойства «спонтанной» деятельности; 2) ответ на • внешние воздействия, выравнивающие градиент энергии, восстанов­лением этого градиента, т. е. свойства раздражимости и возбуди­мости; 3) накопление свободной энергии путем работы против факторов, ведущих к равновесию, т. е. свойства целесообразного поведения и приспособительной изменчивости. Э. С Бауэр рассматривает принцип устойчивого неравновесия как всеобщий закон существования биологических систем и опре­деляет его следующим образом: «Все и только живые системы ни­когда не бывают в равновесии и исполняют за счет своей свободной энергии постоянно работу против равновесия, требуемого законами физики и химии при существующих внешних условиях». Так, орга­низм использует химическую энергию питательных веществ для создания и поддержания внутреннего структурного неравновесия как источника свободной энергии жизнедеятельности, направлен­ной на оптимизацию условий существования, в частности увеличе

2)

Рис. 13. Схема метаболических циклов поддержания устойчивого состояния жи­вой материи (по Э. С. Бауэру, 1935):

Е — молекулы живой материи (число черточек обозначает степень деформированности ак­тивной молекулы), N— молекула питательного вещества. п1 , пг продукты распада, Η выделение тепла

ния притока питательных веществ и, следовательно, на достижение еще большего неравновесия с окружающей средой (рис. 13).

Живая система способна удаляться от равновесного состояния в большей степени, чем любая неживая в равных условиях. Поэтому свободная энергия неживой системы будет больше, чем таковая у энергетически эквивалентной живой системы после того, как они обе выполнят максимальную работу. Разница энергетических уров­ней может служить количественной оценкой работы живой системы против равновесия:

где свободная энергия неживой системы обозначается как F1 , а жи­вой—как F; исходная энергия неживой системы X', а живой—X;

изменения за время t энергетического уровня неживой системы х', Q Живой — х.

Неравновесное состояние, характерное для живой системы, ко-Ренным образом отличается от динамического равновесия, т. е. непрерывного балансирования прихода и расхода, которое часто считают ведущим принципом живой организации. В качестве наи более яркого проявления роли динамического равновесия в жизни животного обычно приводят весьма непродолжительные сроки пол­ного вещественного обновления его тканей и органов при внешней неизменности их морфологии и бесперебойном выполнении и\ функций.

Однако такое динамическое равновесие можно наблюдать и в неживой природе. Например, бьющий из-под земли фонтанчик род­никовой воды сохраняет свою форму и непрерывно выполняет одну и ту же физическую работу, хотя каждое мгновение его образуют все новые и новые частицы воды, сменяющие друг друга. Особен­ность живой системы состоит в том, что она способна использовать внешние ресурсы для создания внутреннего источника свободной энергии, направляемой на работу против внешних физических и химических факторов, а неживая система такой способностью не обладает. Поэтому голодающее животное развивает бурную деятельность по добыванию пищи, а лишенный напора родниковый фонтанчик немедленно сходит на нет.

Негэнтропия против энтропии

Термодинамический аспект изучения биокибернетической систе­мы позволил ввести ряд специальных количественных характери­стик ее организации. Так, по способности различных видов энергии к превращениям в другие формы Л. Бриллюэн (1960) оценил наи­более высоко механическую и электрическую энергию, на сред­нее место поставил химическую и на последнее—тепловую. При­нимая в качестве меры неупорядоченности тепловой энергии энтро­пию (5), а для оценки степени упорядоченности—негэнтропию (N), он предложил количественную характеристику организации си­стемы исходя из того, что высококачественные виды энергии отра­жают удельный вес упорядоченных, а низкокачественные — случай­ных отношений между элементами системы.

Открытая неравновесная живая система находится под совокуп­ным влиянием термодинамических, физических и химических зако­нов, которые по-разному изменяют величины N и S. Так, второй закон термодинамики допускает лишь такие преобразования энер­гии, которые ведут к необратимому накоплению тепловой, т. е. спо­собствуют увеличению энтропии, а следовательно, снижают степень организованности системы.

Использование различных физических превращений, особенно при высокой связности элементов системы, может лишь задержать рост энтропии и уменьшение негэнтропии, но не в состоянии оста­новить дезорганизацию системы. И только многостадийные хими­ческие процессы основного обмена веществ, которые могут проте­кать как по эндотермическому (с поглощением тепла), так и по эк­зотермическому (с выделением тепла) типу и изменять структуру физических связей, способны использовать низкокачественную теп­ловую энергию для производства высококачественной ее формы, т. е. уменьшать энтропию, увеличивать негэнтропию, а следовательно:, повышать организованность системы за счет углубления энтропии

в окружающей среде.

С этой точки зрения становятся понятными условия возникнове­ния свойств самоорганизации в сложных вероятностных биокибер-

нетических системах. Сложность и многообразие химических реак­ций обусловливают преобразование потоков тепловой энергии в хи­мические и физические виды энергии упорядоченных связей При этом наступает повышение химической и физической связности, что ведет к дальнейшему уменьшению энтропии и тем самым еще более усиливает процессы упорядоченности структур системы На этом этапе действует механизм поло­жительной обратной связи. Одна­ко по мере возрастания организо­ванности системы в ней сокраща­ется объем неупорядоченно миг­рирующей энергии. Эти отноше­ния по типу отрицательной об­ратной связи удерживают пока­затель организации от превыше­ния оптимального уровня.

Рис 14 Реакция открытой систе­мы на внешнее воздействие (по Burton, 1955)

С открытым характером жи­вых систем связано и своеобраз­ное течение их реакций на внеш­ние воздействия. Если в закры­тых системах изменение, например, активности ферментов, дейст­вующих на различные звенья цепи химических превращений, мо­жет лишь замедлить или ускорить достижение определенного ста­ционарного состояния, то в открытой системе такое изменение не только повлияет на скорость реакции, но и приведет систему к но­вому положению «равновесия» Причем это новое стационарное положение будет достигаться не прямым путем через промежуточ­ные значения, а путем предварительного «выброса» в экстремаль­ное состояние (рис. 14). Однако, как указывает И. И. Шмальгау-зен (1961), «все биологические системы являются ограниченно ог-крытыми», так как каналы их связи с внешней средой контролиру­ются и регулируются самой системой в соответствии с ее состоя­нием. Это действительно для всех уровней биологической органи­зации. Так, обмен веществ клетки во многом зависит от влияний нуклеопротеидов ядра и активности энзимов, поведение особи жи­вотного от состояния его нервной системы, голода, насыщения, половых мотиваций, взаимодействие вида с окружающей средой — от внутривидового естественного отбора.

Иерархическая организация

Существенной особенностью организации биокибернетических сиcтeм является их иерархическое строение. Как уже было сказано выше, любая система одновременно является элементом системы более высокого уровня, а любой элемент может также рассматриваться как система из более простых элементов. Например, хлоро­пласт—это элемент системы растительной клетки, сама клетка—. элемент системы листа, стебля или другого органа растения, в свою очередь лист—элемент растительного организма, а растение в це­лом—элемент системы биоценоза.

Каждая система более высокого уровня объединяет в единое целое, прямо или косвенно подчиняет своим закономерностям все нижележащие. Верхние и нижние границы такого иерархического ряда биологической организации определяются переходом к иным категориям форм движения материи. Например, если химический элемент системы обмена веществ в клетке в свою очередь предста­вить как систему, организованную из атомов, то это уже не биоло­гическая, а химическая система. С другой стороны, системы жизни, связанные с деятельностью человека, выходят из рамок чисто био­логических, и на них накладывают свой отпечаток социальные зако­номерности.

Управление в биокибернетических системах как целесообразное саморегулирование

Сложная динамическая организация биокибернетической систе­мы требует непрерывного управления, без которого система не мо­жет существовать. Особенность этого управления состоит в том, что оно происходит на основе самоорганизации и приобретает активный характер.

Активность живых систем

Возможность поддержания определенного состояния в условиях варьирования многих переменных в саморегулирующейся на основе обратных связей системе наглядно демонстрирует гомеостат (У. Эшби, 1962). В живых организмах способность противостоять внешним воздействиям достигает степени активного поведения.

Для живых систем, как мы уже видели выше, особенно харак­терны процессы саморегуляции за счет непрерывной внутренней работы создания негэнтропии и неравновесных структур. При этом система не только противодействует влиянию факторов, ведущих к ее дезорганизации, и облегчает действие факторов, благоприят­ствующих повышению ее организованности, но в отсутствие тех и других факторов, движимая громадным объемом внутренней орга­низующей деятельности, может проявлять независимую от внешних условий, в данный момент обусловленную внутренними факторами так называемую спонтанную активность. Закрепление спонтанной активности во вновь возникающих структурах дает основу явлени­ям развития.

Это исключительное свойство живого долгое время служило поводом для виталистических рассуждений и лишь в свете концеп­ции современной теоретической биологии и физиологии находит свое место среди естественнонаучных понятий. Исключительнаяструктурная сложность и множественность обратных связей в био-кибернетических системах превращает процессы управления ими в процессы внутреннего саморегулирования по собственным законам организации системы, а термодинамическая неравновесность ведет к их проявлениям в форме спонтанной активности развития.

Поскольку процессы управления в живых системах осуществля­ются главным образом как внутренние саморегуляторные, то они определяются в основном внутренними законами биокибернетиче­ской организации. Эти законы, как было выяснено выше, обуслов­ливают преимущественное направление процессов преобразования системы в сторону возрастания упорядоченности и связаности ее элементов в структурном смысле и снижения значения энтропии в термодинамическом смысле. А. И. Берг (1963) считает даже, что все акты управления в кибернетических системах сопровождаются уменьшением энтропии.

Целесообразность саморегуляции

Из изложенного выше следует, что саморегулирование живой природы осуществляется не хаотично, а в определенном направле­нии, в виде решения задачи оптимизации ее биокибернетических систем. Большая сложность и вероятностное строение последних позволяют ей решать задачу оптимизации разными способами, а контроль решения через обратные связи стимулирует поиски но­вых способов до получения результата. С этой точки зрения получа­ет биокибернетическое определение такое специфическое понятие биологии, как целесообразность, которому также долгое время при­давали виталистический оттенок. По-видимому, в понятиях термо­динамики целью живой системы следует считать оптимизацию ее поведения в данных условиях, которая достигается путем увеличе­ния структурной и энергетической неравновесности со средой, вы­ражаемой функцией отношения негэнтропии к энтропии. Однако ввиду сложности биологической эволюции не всегда можно точно определить критерии такой оптимизации. Целесообразная саморе­гуляция является основной формой процессов управления в живой природе.

Цели системы биосферы и ее подсистем

Представление о целесообразности саморегулирования в живых системах, как механизме их приспособления к конкретным услови­ям существования освобождает понятие цели от телеологических и антропоморфических толкований. Такой взгляд находит поддерж­ку и среди философов (В. С. Украинцев, 1973). Исходя из этого представления цель биологической системы можно определить, как объективно проявляющееся направление активности, зависящее от ее организации и влияний окружающей среды.

Как уже было отмечено, общее направление активности биосфе­ры в целом идет в сторону повышения уровня организации и накоп ления свободной энергии устойчивого неравновесия. Однако роль основных подсистем земной жизни в достижении этой цели оказы­вается весьма различной.

Зеленые растения, используя силы (солнечная энергия) и мате­риалы (углекислота, вода, соли) неживой природы, создают пер­вичные органические соединения, несущие энергию устойчивого неравновесия. Они создали и продолжают поддерживать атмосфе­ру нашей планеты и являются базой для существования более вы­соких форм жизни. Поэтому направление активности или цель растительной подсистемы биосферы можно определить как первич­ный синтез биомассы из неорганических источников и создание ис­ходного негэнтропийного материала.

Масса живого вещества, созданная растениями, используется животными прямо (травоядные) или вторично (плотоядные) для преобразований в более высокооргаяизованные структуры свое­го тела. На основе этих преобразований возникают такие новые вы­сокоэффективные приспособительные функции, как двигательная и нервная, резко увеличивающие активность организмов. Общее

направление активности в животной подсистеме биосферы можно определить как прогрессивные преобразования биомассы, повыша­ющие ее структурную организацию и уровень негэнтропии.

Принципиальная особенность человеческой деятельности состо­ит, как известно, в использовании орудий труда. Тем самым ?

К-во Просмотров: 215
Бесплатно скачать Реферат: Управление большими системами