Реферат: Уравнения Больцмана, Лиувилля, Боголюбова
Уравнения Больцмана, идея которого принадлежит самому Больцману, не может считаться строгим. Действительно, запись этого уравнения, как уравнения непрерывности в m-пространстве с источниками (интеграл столкновений) в правой части, предполагает, во-первых, что изменение во времени функции распределения f(r, v, t) аддитивно относительно двух процессов, имеющих различное происхождение. Члены vi df/dxi и wi df/dvi в левой части
или
характеризуют потоки газа, возникающие вследствие существования градиента плотности и внешних полей, в то время как правые части возникают вследствие учета столкновений молекул. Таким образом предполагается, что потоки и столкновения не влияют друг на друга. Во-вторых, в интеграле столкновений значения функций берутся в одной и той же точке пространства r, в то время как с учетом конечных размеров молекул координаты в функциях и в функциях должны быть выбраны различными.
Далее, как мы уже упоминали, классический вывод уравнения Больцмана предполагает отсутствие корреляций между скоростями молекул. Наконец, что наиболее существенно, в уравнении Больцмана учитываются только попарные столкновения молекул, и нет более или менее очевидного рецепта, позволяющего учесть столкновения групп из трех, четырех и более молекул. Между тем ясно, что учет таких процессов существен для плотных газов.
В приближении парных соударений длина свободного пробега обратно пропорциональна плотности газа
(s— эффективное сечение парных столкновений).
Как известно, это приводит к тому, что коэффициенты переноса: À — коэффициент теплопроводности, a — коэффициент вязкости, не зависят от плотности п и, стало быть, от давления. При учете многочастичных столкновений выражение для lдолжно иметь вид
,
где коэффициенты a, А возникают в связи с учетом трехчастичных, коэффициенты b и В — в связи с учетом четырехчастичных и т. д. столкновений. В результате для длины пробега и для коэффициентов переноса должны возникнуть вириальные разложения такого же типа, какие возникают в статистической физике для уравнения состояния неидеального газа.
В связи со сказанным целесообразно подойти более строго к проблеме вывода кинетического уравнения и к его возможным обобщениям. Это можно сделать с помощью весьма общего и строгого метода, предложенного Н. Н. Боголюбовым, к краткому изложению которого мы и переходим.
Имеем систему из N одинаковых частиц, состояние которой в классической механике мы будем задавать с помощью 2N векторов ri, vi. Совокупность ri, и vi мы для краткости будем обозначать символом xi а произведение d3rid3vi - символом dxi.
Введем функцию распределения F(N)(x1, … ,xN, t) в Г-пространстве, считая координатами бN-мерного Г-пространства координаты и проекции скоростей всех частиц. Выражение
F{N)(х1, х2, ... , xN, t)dx1dx2 ... dxN
дает вероятность того, что изображающая точка в Г-пространстве находится в объеме dx1, dx2 ... dxN, а функция F(N) нормирована на единицу
ò F{N)(х1, х2, ... , xN, t)dx1dx2 ... dxN=1. (1)
Будем в дальнейшем считать, что внешние поля отсутствуют и частицы взаимодействуют с потенциалом взаимодействия U(rik) = ти (rik). Для исключения граничных эффектов мы будем рассматривать термодинамический предел, при котором , a w=V/N остается конечным.
Дальнейшие рассуждения основаны на уравнении Лиувилля, которое мы запишем здесь в виде
, (2)
где оператор называется оператором Лиувилля и определяется формулой
(3)
причем wi, k = -ди (ri,k)/dri - ускорение, придаваемое i-й частице взаимодействием с k-й частицей. Функции распределения r(р, q) и функции F{N) (ri, vi, t) по существу идентичны, и, следовательно, F(N) (xi, t) подчиняется уравнению
Следует обратить внимание читателя на следующие принципиальные свойства уравнения Лиувилля.
1. Функция F(N) (х1, х2, ... , xN, t) лишь «насильственно» была нами связана с вероятностными представлениями. Мы могли бы рассматривать ее не как плотность вероятности для единичной системы с координатами ri, vi, а как произвольно заданную в начальный момент времени функцию распределения для ансамбля систем - ансамбля Гиббса.
Иначе говоря, мы можем себе представить, что при t = 0 мы «приготовляем» ансамбль, т. е. произвольным образом «высыпаем» изображающие точки в фазовое пространство, задавая тем самым F{N) {x1, ..., xN, 0). В дальнейшем эти «высыпанные» точки «плывут» по своим фазовым траекториям, подчиняясь исключительно законам механики. Таким образом, уравнение (2) вовсе не имеет статистического вероятностного содержания, а несет в себе только чисто механическую информацию.
2. Уравнение Лиувилля, являясь уравнением первого порядка по времени, описывает причинно-обусловленное изменение функции F(N)(х1, ..., xN, t). При заданном ее начальном значении F(N) (х1, ... , xN, 0) уравнение (2) однозначно предсказывает все будущие значения F(N)(xi,t).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--