Реферат: Уравнения и способы их решения
1) ().
Уравнение имеет два действительных корня .
2) ().
Уравнение имеет один дествительный корень и два комплексных корня
.
3) ().
Уравнение имеет два действительных корния и два комплексных корня .
4) ().
Уравнение действительных корней не имеет. Комплексные корни: .
5) ().
Уравнение имеет один дествительный корень и два комплексных корня
.
6) ().
Уравнение действительных корней не имеет. Комплексные корни:
, .
Кубические уравнения
Если квадратные уравнения умели решать еще математики Вавилонии и Древней Индии, то кубические, т.е. уравнения вида
, где ,
оказались "крепким орешком". В конце XV в. профессор математики в университетах Рима и Милана Лука Пачоли в своем знаменитом учебнике "Сумма знаний по арифметике, геометрии, отношениям и пропорциональности" задачу о нахождении общего метода для решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов такой метод вскоре был найден.
Начнем с упрощения
Если кубическое уравнение общего вида
, где ,
разделить на , то коэффициент при станет равен 1. Поэтому в дальнейшем будем исходить из уравнения
. (11)
Так же как в основе решения квадратного уравнения лежит формула квадрата суммы, решение кубического уравнения опирается на формулу куба суммы:
Чтобы не путаться в коэффициентах, заменим здесь на и перегруппируем слагаемые:
. (12)
Мы видим, что надлежащим выбором , а именно взяв , можно добиться того, что правая часть этой формулы будет отличаться от левой части уравнения (11) только коэффициентом при и свободным членом. Сложим уравнения (11) и (12) и приведем подобные:
.
Если здесь сделать замену , получим кубическое уравнение относительно без члена с :
.
Итак, мы показали, что в кубическом уравнении (11) с помощью подходящей подстановки можно избавиться от члена, содержащего квадрат неизвестного. Поэтому теперь будем решать уравнение вида
. (13)
Формула Кардано
Давайте еще раз обратимся к формуле куба суммы, но запишем ее иначе:
.
Сравните эту запись с уравнением (13) и попробуйте установить связь между ними. Даже с подсказкой это непросто. Надо отдать должное математикам эпохи Возрождения, решившим кубическое уравнение, не владея буквенной символикой. Подставим в нашу формулу :
, или
.
Теперь уже ясно: для того, чтобы найти корень уравнения (13), достаточно решить систему уравнений
или
и взять в качестве сумму и . Заменой , эта система приводится к совсем простому виду:
Дальше можно действовать по-разному, но все "дороги" приведут к одному и тому же квадратному уравнению. Например, согласно теореме Виета, сумма корней приведенного квадратного уравнения равна коэффициенту при со знаком минус, а произведение – свободному члену. Отсюда следует, что и - корни уравнения
.
Выпишем эти корни: