Реферат: Усилитель широкополосный
(3.18)
3) Предельно допустимого тока коллектора:
(3.19)
4) Допустимая мощность, рассеиваемая на коллекторе:
(3.20)
Тип проводимости транзистора может быть любой для ШУ.
Анализируя требуемые параметры, выбираем транзистор КТ913А.
Это кремниевый эпитаксиально-планарный n-p-nгенераторный сверхвысокочастотный.
Предназначенный для работы в схемах усиления мощности, генерирования, умножения частоты в диапазоне 200 – 1000 МГц в режимах с отсечкой коллекторного тока.
Выпускается в герметичном металлокерамическом корпусе с полосковыми выводами.
Основные параметры транзистора:
1) Граничная частота коэффициента передачи по току в схеме с ОЭ:
fГ =900 МГц;
2) Постоянная времени цепи обратной связи:
τс =18пс;
3) Емкость коллекторного перехода при Uкб =28В:
Ск =7пФ;
4) Емкость эмиттерного перехода:
Cэ =40пФ;
5) Максимально допустимое напряжение на переходе К-Э:
Uкэ max= 55В;
6) Максимально допустимый ток коллектора:
Iк max = 0,5А;
Выберем следующие параметры рабочей точки:
Т.к. транзистор хорошо работает только начиная с 6В то примем .
3.3 Расчёт и выбор схемы термостабилизации
Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования предъявляются к температурной стабильности каскада. В данной работе рассмотрены три схемы термостабилизации: эмиттерная, пассивная коллекторная, и активная коллекторная. Рассчитаем все три схемы, а затем определимся с выбором конкретной схемы стабилизации.
3.3.1 Эмиттерная термостабилизация
Эмиттерная термостабилизация широко используется в маломощных каскадах, так как потери мощности в ней при этом не значительны и её простота исполнения вполне их компенсирует, а также она хорошо стабилизирует ток коллектора в широком диапазоне температур при напряжении на эмиттере более 5В.
Рисунок 3.3-Схема каскада с эмиттерной термостабилизацией.