Реферат: Усилители на биполярных транзисторах

· усилители напряжения(определяющим свойством усилителя является усиление напряжения);

· усилители тока(определяющим свойством усилителя является усиление тока);

· усилители мощности(под усилителем мощностиобычно понимается усилитель или его оконечная выходная часть, рассчитанная на отдачу в цепь внешней нагрузки определенной мощности при заданной величине входного сигнала).

2. Основные задачи проектирования транзисторных усилителей

Любой электронный усилитель требует наличия внешнего источника питания с определенными характеристикам (обусловлены характеристиками самого усилителя). В применении к транзисторным усилительным каскадам это означает, что для всех транзисторов каскада должен обеспечиваться соответствующий режим по постоянному току (поданы внешние напряжения от источников питания) обеспечивающих все практически возможные токи). Задание такого режима, по сути, является заданием рабочей точки транзисторного каскада. Правильное задание рабочей точки пo постоянному току имеет большое значение, поскольку оказывает влияние на многие свойства усилителя (коэффициент усиления, уровень шумов, уровень линейных и нелинейных искажений и т.п.). Вопросу выбора и стабилизации положения рабочей точки транзисторного каскада целиком посвящена глава 3. Но из сказанного здесь читатель должен понять, что существует два существенно различающихся аспекта проектирования транзисторных схем. Первый — это организация питания и установка правильного режима по постоянному току, а второй — обеспечение усиления проходящего через усилитель переменного сигнала. Конечно, между этими двумя задачами существуют определенные пересечения, и в целом невозможно сосредотачиваться на решении одной из них, абсолютно забыв о другой, но они все равно остаются разными задачами, требующими различных подходов к своему решению.

Ясно, что при расчете цепей по постоянному току необходимо оперировать абсолютными значениями токов и напряжений, действующими в цепях, и опираться на соответствующие модели, отражающие работу транзисторов и таких режимах. А вот для анализа поведения схем при подаче на них переменных сигналов указанный метод оказывается неудобным. Действительно, зачем проводить расчеты при полных напряжений и токов в цепях, да еще и изменяющихся во времени, если нас интересует только поведение небольшой переменной составляющей, отражающей уровень полезного сигнала.

Для решения указанной задачи проводится так называемый малосигнальный анализ цепей. При этом используют малосигнальные эквивалентные схемы и группы малосигналъных параметров. Основным допущением, используемым в такой модели, является требование об относительно небольшой величине переменной составляющей посравнению с действующими в цепях постоянными токами и напряжениями. Если это требование нарушается, то большинство результатов, полученных с помощью мало сигнального, анализ не отвечают действительным процессам в цепях — требуется расчет полных токов и напряжений.

3. Применяемые при анализе схем обозначения и соглашения

Прежде всего сделаем ряд пояснений, касающихся таких фундаментальных понятий, как ток и напряжение. Мы не будем здесь подробно описывать физический смысл данных величин, поскольку предполагаем, что хотя бы с этиv читатель уже знаком. Напомним лишь стандартные правила имеющие отношение к представлению токов и напряжений в различных формулах, а также к их изображению на принципиальных схемах. В международной системе единиц напряжение выражают в вольтах (В), а ток в амперах (А).

Как известно, электрический ток — это упорядоченное движение носителей заряда. В любой электрической цепи упорядоченное движение зарядов происходит в одном из двух возможных направлений. Поэтому и электрический ток принято рассматривать как скалярную величину, имеющую одно из возможных направлений. За направление тока, независимо от природы носителей электрического заряда и их типа принимают направление, в котором перемещаются (или мог ли бы перемещаться) носители положительного заряда. Таким образом, направление электрического тока в наиболее распространенных проводниковых материалах — металлах — противоположно фактическому направлению перемещения носителей заряда — электронов. О направлении тока судят по его знаку, который зависит от того, совпадает или нет направление тока с направлением, условно принятым за положительное. Если в результате расчетов, выполненных учетом выбранного направления, ток получится со знаком плюс, то его направление, т.е. направление перемещения положительных зарядов, совпадает с направлением, выбранный за положительное. Если ток будет иметь знак минус, то его направление противоположно условно-положительном). Само условно-положительное направление тока при расчетах электрических цепей может выбираться совершение произвольно (обычно пользуются соображениями удобства расчетов).

Напряжение также представляет собой скалярную величину, которой всегда приписывают определенное направление. Обычно под направлением напряжения понимают направление, в котором под действием электрического поля перемещаются (или могли бы перемещаться) свободные носители положительного заряда. Очевидно, что на участках цепи, в которых не содержатся источники энергии, и перемещение носителей заряда осуществляется за счет энергии электрического поля, направления напряжения и тока совпадают.

При расчетах электрических цепей направление напряжениясравнивается с направлением, условно выбранным за положительное. Если в результате расчетов напряжение на рассматриваемом участке цепи получится со знаком плюс, то Направление напряжения совпадает с направлением, условно принятым за положительное; если напряжение получится со знаком минус, то его направление противоположно условно-положительному.

На принципиальных схемах направления токов и напряжений, принимаемые за условно-положительные, могут показываться стрелками.

Для обзначения токов и напряжений в формулах общепринятым является использование латинских букв I (для токов) и U (для напряжений).

При анализе цепей, находящихся под гармоническими воздействиями, широкое распространение получил символический метод комплексных амплитуд (комплексный метод, или, иногда просто — символический метод). Он основан на представлении гармонических функций с помощью комплексных чисел или, точнее, на преобразовании исходных гармонических функций из временной области (области вещественного переменного t) в частотную область (область мнимою аргумента jw).. Выглядит это так.

Каждой гармонической функции времени a(t)=Ат cos(t +ψ) можно поставить в соответствие копмплекснозначную зависимость

т [cos(t + ψ) + j sin (t + ψ)] = .


Причем модуль комплексной величины a(t) равен амплитуде гармонической функции = Ат , а аргумент — ее фазе =t + ψ. Сама исходная действительная гармоническая функция равна действительной части введенной таким образом комплекснозначной функции:

Величина называется комплексной амплитудой гармонической функции времени

a(t)=Ат cos(t +ψ).

Известно, что в установившемся режиме работы токи и напряжения всех ветвей линейной электрической цепи, находящейся под гармоническим воздействием, являются функциями времени одной частоты, т.е. токи и напряжения отдельных ветвей в этом случае отличаются только амплитудами и начальными фазами, поэтому полная информация о них при известной частоте содержится в соответствующих комплексных амплитудах. Зная амплитуды и начальные фазы токов или напряжений любой ветви, всегда можно однозначно найти их комплексные амплитуды. И обратно, по известной комплексной амплитуде можно однозначно установить амплитуду и начальную фазу исходного гармонического колебания.

Таким образом, каждой гармонической функции времени a(t) можно единственным образом поставить в соответствие комплексное число (комплексную амплитуду), которое можно рассматривать как изображение этой гармонической функции на комплексной плоскости. Причем оказывается, что линейным операциям над гармоническими функциями времени соответствуют линейные операции над их комплексными амплитудами (операции дифференцирования и интегрирования заменяются при этом операциями умножения и деления). Это позволяет существенно упростить анализ линейных цепей, находящихся под гармоническим воздействием, заменив систему интегродифференциальных уравнений, составляемую для мгновенных значений токов и напряжений в ветвях цепи, системой алгебраических уравнений для комплексных амплитуд соответствующих токов и напряжений. Отметим также, что при рассмотрении чисто активных безынерционных линейных цепей (т.е. цепей без фазовых расхождений между сигналами в различных точках) все комплексные амплитуды становятся действительнозначными и анализ сводится к оперированию с простыми действительными амплитудами гармонических функций времени.

Наряду с комплексными амплитудами в качестве изображений гармонических функций на комплексной плоскости широко используются другие комплексные величины — комплексные действующие значения:

Все правила, устанавливающие соответствие между операциями над гармоническими функциями времени и операциями над их комплексными амплитудами, справедливы и для операций над комплексными действующими значениями гармонических функций.

В большинстве реальных усилии тельных схем на транзисторах.допущение о гармоническом характере входных воздействий оказывается вполне работоспособным. Если далее предположить, что цепь линейна (это выполняется, если амплитуда входных воздействий невелика, а транзистор усилителя находится в режиме линейного усиления), то становится вполне возможным применить метод комплексных амплитуд для мало сигнального анализа транзисторных усилительных схем. Более того, мы можем даже избавиться от комнлекснозначности амплитуд, если добавим требование об отсутствии фазовых сдвигов между сигналами, что близко к истине при рассмотрении достаточно низких частот.

Анализируя схемы методом комплексных амплитуд, мы будем говорить о комплексных токах и напряжениях () строго говоря, так обычно называют комплексные действующие значения гармонических токов и напряжений, но для удобства мы часто будем подразумевать именно комплексные амплитудные значения (переход от амплитудных к действующим значениям, как было показано ранее, вообще не оказывает влияния на расчетные формулы).

В схемах при установлении направлений переменных токов и напряжений, заданных комплексными значениями, действуют все те же правила, что были описаны для постоянных токов и напряжений (т.е. знак "плюс" означает совпадение с направлением, условно принятым за положительное, а знак "минус" — несовпадение). Для условно-положительных направлений, когда это возможно, выбираются направления, совпадающие с направлениями реальных токов и напряжений, действующих в анализируемых цепях.

К-во Просмотров: 328
Бесплатно скачать Реферат: Усилители на биполярных транзисторах