Реферат: Усилители на биполярных транзисторах

Зависящие от времени (как правило, гармонические) переменные электрические показатели (например, токи и напряжения) в цепях будем обозначать малыми латинскими буквами: i(t), u(t) и т.д. При этом, если нет необходимости делать особый акцент на временной зависимости мгновенных значений этих показателей, если характер данных зависимостей не определен, не имеет значения для рассматриваемого вопроса или если в зависимостях присутствует не только гармоническая, но и постоянная составляющая (показатели вообще могут быть константами), то будем использовать традиционные обозначения большими латинскими буквами: I, U и т.д.

Как правило, нам придется отдельно рассматривать переменные и постоянные составляющие токов и напряжений, в цепях. При этом для обозначения постоянных составляющих мы будем пользоваться дополнительным индексом "0", а для обозначения переменных составляющих — дополнительным индексом "-". Т.е. для полных токов и напряжений в цепях действуют формулы: U=Uо +, I = Iо +. Заметим, что в большинстве случаев анализ по переменным составляющим проводится методом комплексных амплитуд. Так что вместо зависящих от времени переменных составляющих в получаемые нами формулы можно подставлять комплексные или при определенных условиях даже действительные амплитуды этих составляющих. Обозначение с индексом "-" применяется именно там, где существует возможность вариации подставляемых в формулы значений в зависимости от некоторых условий расчетов (например, проводим ли мы расчеты для низких или для высоких частот, а также используем ли мы действительные, комплекснозначные или определенные во временной области параметры элементов).

Анализируя электрические цепи методом комплексных амплитуд, мы приходим к комплексным значениям некоторых реальных параметров этих схем (комплексные сопротивления, проводимости, коэффициенты усиления и т.п.). Все такие величины обычно не принято обозначать так, как мы это делаем для комплексных амплитуд и действующих значений, — точкой вверху. Для каждого случая, как правило, есть свое устоявшееся обозначение. Объединяет их использование прописных латинских букв (G, Y, Н и т.д.). Соответствующие же малые латинские буквы (g, у,h и т.д.) применяются для обозначения действительной составляющей таких параметров (обычно комплекснозначные параметры становятся действительными при соблюдении определенных условий, применение в формулах малых латинских букв означает, что данные условия предполагаются выполненными).

Заметим также, что иногда параметры элементов схем могут зависеть от того, рассматриваем ли мы поведение данного элемента под действием постоянных токов и напряжений или делаем то же самое для их переменных составляющих. В общем случае нет какой-то универсальной методики различения таких параметров — следует внимательно читать текстовые комментарии и понимать суть физических процессов в цепях. Однако часто речь идет о так называемых статических и дифференциальных параметрах. Мы будем придерживаться системы, когда буквенный индекс, сопровождающий статические параметры, пишется с прописной буквы ( и т.п.), а буквенный индекс, сопровождающий дифференциальные параметры, — с малой буквы и т.п.). В случаях, когда разница между статическими и дифференциальными параметрами отсутствует, чаще применяется написание с прописными буквами. Если у параметра нет буквенного индекса или для него по каким-либо причинам неудобно менять размер используемых букв в индексе, то возможен переход к малой букве в обозначении самого дифференциального параметра ( и т.п.).

4. Статистические характеристики

При анализе усилительных схем на транзисторах широко используются т.н. статические характеристики: Статическими характеристиками транзисторов называют графики, выражающие функциональную связь между постоянными токами и напряжениями на электродах транзистора.

В зависимости от того, какие токи и напряжения принимаются за независимые переменные, возможны различные" системы функциональной связи и соответствующие им семейства статических характеристик. В общем случае связь между токами и напряжениями на трех электродах транзистора можно выразить шестью различными системами (по четыре семейства характеристик в каждой системе).

Мы не будем здесь рассматривать все эти случаи, а обратимся сразу к системе, получившей наибольшее распространение. Это т.н. система статических параметров (или гибридная система), которая соответствует наиболее распространенной группе малосигнальных параметров и имеет ряд преимуществ перед другими системами.

В данной системе в качестве независимых переменных приняты входной ток и выходное напряжение:

В статическом режиме эти зависимости выражаются четырьмя семействами характеристик:

входными

выходными

обратной связи


прямой передачи

Заметим, что для разных схем включения транзистора в качестве входных и выходных выступают токи и напряжения на его различных электродах. Поэтому вид статических характеристик зависит от схемы включения транзистора.

Для однозначного установления зависимости между токами и напряжениями транзистора достаточно иметь два семейства характеристик из четырех названных. Другие два могут быть найдены с помощью перестроений. На практике наибольшее распространение получили входные и выходные характеристики. Характеристики прямой передачи и обратной связи обычно выступают в роли второстепенных.

Статические характеристики имеют большое значение при анализе работы самых разнообразных усилительных схем. По статическим характеристикам выбираете оптимальное положение рабочей точки транзистора по постоянному току, вычисляются допустимые амплитуды колебаний переменного напряжения и тока на входе усилителя, анализируется линейность усиления и многие другие показатели схемы. По выходным характеристикам можно определить, правильно ли согласован усилительный каскад с нагрузкой, и предсказать поведение этого каскада при изменениях характера нагрузки.

В реальных схемах транзисторных усилителей в качестве входных токов и напряжений выступают напряжения и токи на конкретных электродах. Например, для схемы с ОЭ входным напряжением будет напряжение на участке эмиттер—база(), а выходным током — ток коллектора (IК ). Часто статические характеристики транзисторных схем называют по имени электрода, ток которого эти характеристики отражают. Так, в приведенном выше случае мы будем говорить о выходных коллекторных характеристиках.

5. Статические и дифференциальные параметры транзисторов

Выше мы уже упоминали о наличии у транзисторов гак называемых малосигнальных параметров. Теперь поговорим об этом подробнее. Такие параметры характеризуют работу транзистора в режиме усиления малых переменных токов и напряжений. Многие из них имеют четкую физическую интерпретацию и непосредственно присутствуют в физических эквивалентных схемах. Некоторые же допускают только чисто математическое толкование. Смысл большинства из этих параметров сохраняется и при переходе к анализу больших сигналов, но их значения изменяются и становятся зависимыми от множества не проявлявшихся при малых сигналах факторов.

Поскольку малосигнальные параметры — это параметры, отражающие работу транзистора для переменных составляющих токов и напряжений, то в большинстве случаев они являются дифференциальными эквивалентами некоторых интегральных (статических) величин, характеризующих работу на постоянном токе. Отсюда возникает второе, употребляемое иногда даже чаще, название малосигнальных параметров — дифференциальные параметры. Между двумя этими терминами не существует однозначной эквивалентности, но почти всегда речь идет об одном и том же.

В качестве примера можем рассмотреть такой важный параметр биполярного транзистора, как коэффициент передачи тока базы в схеме с ОЭ (). У этого параметра есть еще одно часто встречающееся обозначение, идущее от его роли в системе так называемых h-параметров проходного линейного четырехполюсника — или

Интегральный (статический) коэффициент передачи находится как отношение токов (рис. 1):

К-во Просмотров: 336
Бесплатно скачать Реферат: Усилители на биполярных транзисторах