Реферат: Уточнение простой теории МО ЛКАО. Базисная АО. Эффективный заряд-показатель экспоненты

Здесь уже постоянно встречаются оба индекса, и в отличие от расчётов диагонального матричного элемента их опускать нельзя.

Слагаемое 1 (Порождено потенциальной частью одноцентрового гамильтониана)

Это уже знакомый одноэлектронный резонансный интеграл:

. ( 36 )

Для расчёта одноэлектронных двуцентровых интегралов необходимо перейти к двуцентровой эллиптической системе координат.

Слагаемое 2 (Порождено кинетической частью одноцентрового гамильтониана)

а) Используем полученное выше выражение для и получаем

(37 )

Результат - весь недиагональный матричный элемент атомного гамильтониана:

Суммируя потенциальное и кинетическое слагаемые, получаем недиагональный матричный элемент атомного гамильтониана. Он зависит и от показателя экспоненты, и от межъядерного расстояния:

. (38 )

Для расчёта интегралы S , C , A следует перевести в двуцентровую систему координат.

Двуцентровые эллиптические (сфероидальные)координаты

Для расчёта необходимы переменные, позволяющие вычислить молекулярные интегралы. В данной задаче такие естественные пространственные переменные возникают в двуцентровой системе координат. В ней всякий эллипсоид вращения характеризуется условием, и всякий гиперболоид вращения - условием . Центрированные в одних и тех же полюсах системы эллипсоидов и гиперболоидов образуют совокупности взаимно перпендикулярных поверхностей. Это означает, что в любой точке пространства касательные плоскости к пересекающимся эллипсоиду и гиперболоиду взаимно перпендикулярны.

В декартовых координатах пространство разбито на элементы системой взаимно ортогональных плоскостей, а в эллиптической - системами концентрических эллипсоидов, гиперболоидов и пучком плоскостей, пересекающихся на оси вращения.

Всякая точка в декартовых координатах вписана в элемент объёма, ограниченный шестью плоскостями, по две вдоль каждой из трёх взаимно перпендикулярных осей координат.

В эллиптических координатах точка ограничена: “сверху и снизу” - двумя эллипсоидами вращения, “с торцов” - двумя гиперболоидами вращения, “по бокам” - двумя плоскостями, пересекающимися на оси вращения. Ядра молекулы расположены в полюсах координатных поверхностей второго порядка. В каждой вершине пространственного элемента плоскости, касательные к координатным поверхностям, взаимно перпендикулярны, но элемент пространства изначально не является прямоугольным параллелепипедом, и потому его элементарный объём рассчитывается не просто как произведение дифференциалов координат. Формула для его вычисления окажется сложнее и должна учитывать искривление координатных поверхностей.

Вычисление элемента объёма в эллиптических переменных

К-во Просмотров: 185
Бесплатно скачать Реферат: Уточнение простой теории МО ЛКАО. Базисная АО. Эффективный заряд-показатель экспоненты