Реферат: В.Б. Кирьянов. Задача равновесий
- заменой технологических матриц:
c « a ,
- и переобозначением количественных и ценовых векторов:
(p1; 2 )t « q 1; 2 .
При этом прямая часть задачи затрат становится равносильной двойственной части задачи выпуска, а двойственная часть первой - прямой части второй.
Будем называть взаимно-двойственную пару задач прямого (затратного) вида с прямой (количественной) частью на минимум и двойственной (ценовой) частью на максимум:
q 1 | q 1 : min á p1 , q 1 ñ при a q 1 ³ q 2 , | ||
p2 | a | q 2 | : |
p1 | p2 : max á p2 , q 2 ñ при p2 a £ p1 . |
- канонической парой линейных задач статического равновесия, а их переменные q 1 и p2 - канонически сопряженными переменными .
1.4. Задача равновесия
Физическое содержание задачи равновесия. В трехмерном случае: m, n £ 3, наша задача имеет простое физическое истолкование. Во внешнем силовом поле постоянной во времени и пространстве напряженности p1 скалярная линейная функция координат L(q 1 ):
L(q 1 ) = áp1 , q 1 ñ ,
является потенциальной энергией находящегося в точке q 1 пробного тела единичной массы (заряда). Все налагаемые на перемещения пробного тела дополнительные ограничения называются в механике связями . Ограничения нашей задачи
q 1 : a q 1 ³ q 2
задают в пространстве ее переменной q 1 выпуклую многогранную область допустимых перемещений. В итоге, каноническая задача оптимального производственного управления:
q 1 : min á p1 , q 1 ñ при a q 1 ³ q 2 - ?
- физически представляет собою задачу вычисления в ограниченной области пространства координат q 1 точки наименьшей потенциальной энергии L(q 1 ) пробного тела единичной массы в постоянном внешнем силовом поле p1 .
Точка наименьшей потенциальной энергии называется точкой статического равновесия и задача ее определения - задачей статич?