Реферат: В органическом синтезе в реакциях гидрирования участвуют любые молекулы, имеющие ненасыщенные связи. Синтезы Фишера-Тропша. Обратная гидрированию реакция - процесс дегидрирования в промышленном органическом синтезе и в процессах нефтепереработки.
В органическом синтезе в реакциях гидрирования (присоединения H2 ) участвуют любые молекулы, имеющие ненасыщенные связи – С=С, СºС, СºN, –N=N–, C=O и др. Синтезы Фишера-Тропша из СО и Н2 , синтез метанола из СО, СО2 и Н2 также относят к реакциям гидрирования, однако в синтезе углеводородов по Фишеру-Тропшу, кроме присоединения Н2 , происходит и деструктивное гидрирование с разрывом С–О связи. К деструктивному гидрированию относится и гидрогенолиз связи С–С – процессы гидрокрекинга, например,
,
и гидрогенолиз связи С–S (процессы гидрообессеривания нефтяных фракций)
Обратная гидрированию реакция – процесс дегидрирования – занимает важное место в промышленном органическом синтезе и в процессах нефтепереработки. Дегидрируют алканы и алкилбензолы (синтезы бутадиена, изопрена, стирола), нафтены (бензол из циклогексана), спирты (синтезы формальдегида, ацетона, изовалерианового альдегида, циклогексанона). В качестве катализаторов гидрирования используют металлы и их соединения:
Металлические катализаторы – Pt, Pd, Ni, Co, Rh, Ru, Cu – в форме массивных металлов, сплавов, нанесенных катализаторов (М/носитель) и скелетных металлов (никель Ренея, медь Ренея), которые получают выщелачиванием Al из сплавов Al-Ni, Al-Cu и др.
Сульфиды металлов – NiS, CoS, Mo2S3, W2S3.
Комплексы переходных металлов.
Оксиды металлов применяют для процессов дегидрирования, поскольку при высоких температурах (> 200оС) металлы слишком активны и ведут деструктивные процессы. Катализаторами дегидрирования являются следующие оксиды: ZnO, Cr2O3, Mo2O3, W2O3, MgO. При высоких температурах (> 450оС) дегидрирование спиртов наблюдается и на g-Al2O3.
Важнейшая стадия процессов гидрирования – активация молекулы водорода. В случае комплексов металлов в растворах механизм активации водорода сейчас уже ясен:
s-комплекс (1)
Превращение первичного s-комплекса зависит от природы металла, его степени окисления и лигандов в координационной сфере. Возможны гомолиз (2) и гетеролиз (3) связи Н-Н:
(2)
(3)
Участия недиссоциированной молекулы H2 в процессах гомогенного гидрирования пока не установлено. Гидрогенолиз связи М-С, например, в процессе гидроформилирования олефинов
(4)
также рассматривают как результат гомолитического расщепления молекулы Н2 на атоме Со. Не исключена, однако, возможность элементарного акта (метатезис s-связей) через четырехчленное циклическое переходное состояние
.
На поверхности металлов имеет место гомолитическое расщепление Н2 с образованием поверхностных атомов водорода и атомов водорода, растворенных в решетке металла. При наличии полярного растворителя (S) процесс адсорбции Н2 на металлах может проходить гетеролитически и даже сопровождаться полной ионизацией с переносом 2ē на металл.
В этом случае молекулу гидрируемого соединения восстанавливают электроны, связанные с металлом.
При построении кинетических моделей процессов гидрирования на металлах используют представления об однородной поверхности, о равномерно-неоднородной поверхности (модели Лэнгмюра-Хиншельвуда) и о неоднородной поверхности. Например, при гидрировании этилена в рамках гипотезы о взаимодействии адсорбированных на поверхности Niтв этилена и водорода
(5)
На однородной поверхности
(6)
На равномерно-неоднородной поверхности
(7)
Для процесса дегидрирования бутана до бутилена на катализаторе Cr2O3/Al2O3 при 520 – 550оС используют эмпирическое уравнение (8) (для промышленного интервала парциальных давлений):
--> ЧИТАТЬ ПОЛНОСТЬЮ <--