Реферат: Векторна алгебра і деякі її застосування
Вектори.
Означення 1 . Вектором називають величину, яка характеризується не тільки своїм числовим значенням (довжиною), але й напрямком.
Вектори позначають або або а, b, c.
При позначенні вектора двома літерами (наприклад, ) перша літера вказує точку початку вектора, а друга – точку його кінця. В економіці вектори часто позначають однією великою літерою.
Довжину (модуль) вектора позначають , .
Геометрично вектор зображують як напрямлений відрізок (дивись мал.1)
Мал.1
Зображені на цьому малюнку вектори мають довжину:
якщо одиниця масштабу: .
Нульовим вектором називають вектор, початок і кінець якого співпадають.
Такий вектор позначають , його довжина дорівнює нулю, а напрям – довільний.
Рівними називають вектори, які мають однакові довжини та напрямки: .
Колінеарними називають вектори, які розташовані на одній прямій або паралельних прямих (дивись мал.2)
Мал.2
Усі зображені на малюнку 2 вектори – колінеарні.
Протилежними називають колінеарні протилежно спрямовані вектори однакової довжини.
Вектор, протилежний вектору позначають .
Ортом вектора називають вектор 0 довжина якого дорівнює одиниці, а напрям співпадає з , тобто =0 .
Компланарними називають вектори, що лежать в одній площині. В економічних дослідженнях n упорядкованих параметрів розглядають як вектор n вимірного простору Еn .
Матриця-рядок та матриця-стовпець містять упорядковані елементи, тому їх можна розглядати як вектори простору відповідного виміру.
Наприклад, є Е5 є Е4
Елементи вектора-рядка та вектора-стовпця називають координатами вектора. Смисл такої назви пояснимо нижче, після визначення проекцій вектора на координатній осі.
1.1. Деякі економічні приклади.
В розділі 4 частини 5 наведені приклади застосування векторів до задач мікроекономіки.
Так, використовувались вектор-рядок вартості V = (v1 , v2 , v3 , v4 ), компоненти якого – вартості різної сировини, палива, робочої людино-години, та вектор-стовпець потреб інших галузей до продукції цехів 1, 2, 3.
Зараз ознайомимось з іншими прикладами застосування векторів.
Продуктивна функція. При аналізі закономірностей виробництва використовується продуктивна функція, яка, по суті, є співвідношенням між використаними у виробництві ресурсами і випущеною продукцією.
Нехай у деякому виробничому процесі є n виробничих ресурсів. Кількість і-го ресурсу, використованого за проміжок часу t, позначимо хі . Тоді виробничі ресурси – це вектор Х = (х1 , х2 , … хn ).
Нехай підприємство випускає m різних виробів. Кількість j виробу позначемо уі . Тоді випуск усіх виробів буде вектор Y = ( y1 , y2 , … ym ). Нехай - вектор параметрів виробництва (наприклад, різні види транспортних чи інших витрат). Продуктивна функція пов’язує вектори ресурсів Х, випуска Y та параметрів , тобто
Продуктивна функція задається аналітично або таблично.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--