Реферат: Векторна алгебра і деякі її застосування

Вектори.

Означення 1 . Вектором називають величину, яка характеризується не тільки своїм числовим значенням (довжиною), але й напрямком.

Вектори позначають або або а, b, c.

При позначенні вектора двома літерами (наприклад, ) перша літера вказує точку початку вектора, а друга – точку його кінця. В економіці вектори часто позначають однією великою літерою.

Довжину (модуль) вектора позначають , .

Геометрично вектор зображують як напрямлений відрізок (дивись мал.1)

Мал.1

Зображені на цьому малюнку вектори мають довжину:

якщо одиниця масштабу: .

Нульовим вектором називають вектор, початок і кінець якого співпадають.

Такий вектор позначають , його довжина дорівнює нулю, а напрям – довільний.

Рівними називають вектори, які мають однакові довжини та напрямки: .

Колінеарними називають вектори, які розташовані на одній прямій або паралельних прямих (дивись мал.2)


Мал.2

Усі зображені на малюнку 2 вектори – колінеарні.

Протилежними називають колінеарні протилежно спрямовані вектори однакової довжини.

Вектор, протилежний вектору позначають .

Ортом вектора називають вектор 0 довжина якого дорівнює одиниці, а напрям співпадає з , тобто =0 .

Компланарними називають вектори, що лежать в одній площині. В економічних дослідженнях n упорядкованих параметрів розглядають як вектор n вимірного простору Еn .

Матриця-рядок та матриця-стовпець містять упорядковані елементи, тому їх можна розглядати як вектори простору відповідного виміру.

Наприклад, є Е5 є Е4

Елементи вектора-рядка та вектора-стовпця називають координатами вектора. Смисл такої назви пояснимо нижче, після визначення проекцій вектора на координатній осі.

1.1. Деякі економічні приклади.

В розділі 4 частини 5 наведені приклади застосування векторів до задач мікроекономіки.

Так, використовувались вектор-рядок вартості V = (v1 , v2 , v3 , v4 ), компоненти якого – вартості різної сировини, палива, робочої людино-години, та вектор-стовпець потреб інших галузей до продукції цехів 1, 2, 3.

Зараз ознайомимось з іншими прикладами застосування векторів.

Продуктивна функція. При аналізі закономірностей виробництва використовується продуктивна функція, яка, по суті, є співвідношенням між використаними у виробництві ресурсами і випущеною продукцією.

Нехай у деякому виробничому процесі є n виробничих ресурсів. Кількість і-го ресурсу, використованого за проміжок часу t, позначимо хі . Тоді виробничі ресурси – це вектор Х = (х1 , х2 , … хn ).

Нехай підприємство випускає m різних виробів. Кількість j виробу позначемо уі . Тоді випуск усіх виробів буде вектор Y = ( y1 , y2 , … ym ). Нехай - вектор параметрів виробництва (наприклад, різні види транспортних чи інших витрат). Продуктивна функція пов’язує вектори ресурсів Х, випуска Y та параметрів , тобто

Продуктивна функція задається аналітично або таблично.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 207
Бесплатно скачать Реферат: Векторна алгебра і деякі її застосування