Реферат: Векторна функція скалярного аргументу Похідна її геометричний і механічний зміст Кривизна кри

Довжину дуги позначимо . Модуль відношення , де - величина кута в радіанах, на який повертається дотична, коли точка переміститься вздовж кривої в точку , називається середньою кривизною дуги .

Рис.7.6

Означення. Границя (якщо вона існує) середньої кривизни дуги даної кривої, коли точка наближається вздовж кривої до точки , називається кривизною кривої в точці і позначається

. (7.13)

Виведемо формулу для обчислення кривизни. Нехай крива задана в декартовій системі координат рівнянням

,

де функція на відрізку має похідні до другого порядку включно.

Скористаємося формулою (7.13). Очевидно, що коли точка , то довжина дуги . Тому формулу (7.13) можна

записати ще так:

. (7.14)

З другого боку, якщо - кут, утворений дотичною до кривої в точці з додатним напрямом осі , то

.

Звідси

.

Тоді

.

Підставляючи в формулу (7.14) значення і значення , дістаємо формулу для кривини кривої:

. (7.15)

З цієї формули легко дістати формулу для кривизни кривої,

коли остання задана параметричними рівняннями . Справді,

,

.

Тоді, підставляючи значення у формулу (7.15), маємо

. (7.16)

Якщо крива задана в полярній системі координат рівнянням , то

. (7.17)

Величину, обернену до кривої в заданій точці, називають радіусом кривизни кривої і позначають через :

. (7.18)

К-во Просмотров: 224
Бесплатно скачать Реферат: Векторна функція скалярного аргументу Похідна її геометричний і механічний зміст Кривизна кри