Реферат: Векторна функція скалярного аргументу Похідна її геометричний і механічний зміст Кривизна кри
4. Кручення просторової кривої.
Формули Серре-Френе
Співдотична площина просторової кривої при переміщенні вздовж кривої не залишається постійного напрямку; зміну її напрямку можна охарактеризувати зміною напрямку перпендикулярного до неї вектора - одиничного вектора бінормалі.
Зміна напрямку вектора характеризується вектором , який називають вектором другої кривизни або вектором кручення просторової кривої. Модуль цього вектора дорівнює границі відношення кута суміжностей бінормалей (кута, на який повертається бінормаль при переході від даної до сусідньої точки кривої) до довжини відповідної дуги кривої, коли довжина дуги прямує до нуля:
,
тобто швидкості обертання вектора при переміщенні точки по кривій. Знайдемо вектор .
Диференціюємо рівність :
.
Але , тому . Отже,
.
Звідси випливає, що є вектор, що перпендикулярний до вектора ( за означенням векторного добутку) і до вектора , як до одиничного вектора). Значить колінеарний вектору Позначивши довжину вектора через , тобто , будемо мати
(7.33)
Скалярний множник при в правій частині формули (7.33) називають крученням просторової кривої . д - кручення, радіус кручення .
Знайдемо вектор . Для цього диференціюємо рівність :
,
або
Формули
(7.34)
називаються формулами Серре-Френе, це основні формули геометрії просторових кривих.
Виведемо формули для кривизни та кручення просторової кривої, яка задана векторним рівнянням .
Перша із формул Серре-Френе дає
, (7.35)
оскільки . Домножимо другу із формул Серре-Френе скалярно на вектор :
.
Але
,
,
тому