Реферат: Вентовые Поверхности
Винтовые поверхности
Цилиндроид и Коноид
В разделе начертательной геометрии были рассмотрены наиболее распространенные в технике поверхности кругового цилиндра, кругового конуса, шара, прямой призмы, пирамиды. Эти поверхности являются не только наиболее распространенными, но и наиболее простыми по своему образованию. Наряду с такими поверхностями в технике применяются поверхности более сложного образования: цилиндроид, коноид, наклонный геликоид и винтовой цилиндр круглого нормального сечения. Для образования этих поверхностей в качестве направляющих часто используются винтовые линии. Поверхности, образованные с помощью винтовых линий, называют винтовыми поверхностями.
Цилиндроид. Поверхность цилиндроида образуется при перемещении прямой образующей линии 1 по двум кривым направляющим тип (рис. 298) при условии, что эта образующая все время остается параллельной некоторой заданной плоскости параллелизма σ (плоскость направления). Из комплексного чертежа видно, что образующие l, l1, l2, l3 параллельны плоскости параллелизма σ, так как их горизонтальные проекции l1, l2 и др. параллельны горизонтальной проекции χ горизонтально-проецирующей плоскости о. Цилиндроид подобного образования используется при конструировании и изготовлении отвалов плугов, в кузовостроении и при устройстве сводов.
Несколько иначе, с использованием винтовой линии, образуется поверхность винтового цилиндроида, применяющаяся при конструировании и изготовлении режущих инструментов (рис. 299).
Рис. 298. Цилиндроид
Рис. 299. Пример винтового цилиндроида — сверло по дереву
Коноид. Поверхность коноида образуется при перемещении образующей по двум направляющим, из которых одна — кривая, другая — прямая линия; образующая перемещается, оставаясь все время параллельной заданной плоскости параллелизма.
Для образования поверхности винтового коноида строят цилиндрическую винтовую линию 09 (рис. 300, а) и заставляют образующую перемещаться по этой винтовой и по ее оси так, чтобы она все время была параллельна горизонтальной плоскости (плоскости параллелизма). Если винтовой коноид рассечь цилиндром, имеющим с коноидом общую ось и меньший диаметр, то при пересечении получится винтовая линия того же шага. Часть поверхности, заключенной между винтовыми линиями, называется кольцевым коноидом (горизонтальная проекция имеет вид кольца). Любое сечение коноида плоскостью А—А, параллельной плоскости параллелизма, является прямой линией (прямая 10—11).
Винтовой коноид применяют в прямоугольных резьбах (рис. 300, б). Для изображения винта строят ряд винтовых, линий различных диаметров (1 и 2 для большого диаметра d; 3 и 4 для малого — d1). На чертеже построен разрез винта горизонтальной плоскостью А—А. Изображенный винт — однозаходный. Винтовой коноид применяют также в транспортирующих устройствах (шнеки), при устройстве винтовых лестниц, въездов в многоэтажные гаражи (пандусы) и т. д
.
Рис. 300. Винтовой коноид и его применение
Винтовые поверхности - Наклонный геликоид, Винтовой цилиндр круглого нормального сечения Машиностроительное черчение
Наклонный геликоид. Образование этой поверхности аналогично образованию винтового коноида: образующая перемещается по винтовой линии и по ее оси, оставаясь все время параллельной последовательным образующим, прямого кругового конуса (рис. 301, а). Если высоту направляющего конуса принять равной нулю, то наклонный геликоид превратится в винтовой коноид. Таким образом, винтовой коноид есть частный случай наклонного геликоида; образующие винтового коноида перпендикулярны к оси поверхности, в связи с чем эту поверхность иначе называют прямым геликоидом.
Наклонный геликоид так же, как и прямой, широко используется в резьбах. Для образования резьбы треугольного профиля (рис. 301, б) применяют два наклонных геликоида, имеющих обратный наклон образующих. По заданным диаметрам d и d1 и шагу h строят две винтовые линии; к их фронтальным проекциям проводят касательные прямые. Таким образом, изображение на плоскости П2 получается с закругленными углами. Для получения сечения горизонтальной плоскостью А—А проводят горизонтально-проецирующие плоскости. На чертеже проведена одна такая плоскость о. Точки, в которых эта плоскость пересекает винтовые линии, определяют треугольное сечение ABC. Пересечение треугольника А2В2С2 с линией сечения А—А позволяет определить точку Е2, а по ней — Е1 на горизонтальной проекции σ1 плоскости σ. Получившееся сечение винта ограничено двумя ветвями спирали Архимеда. В связи с последним наклонный геликоид иногда называют архимедовым геликоидом.
Винтовой цилиндр круглого нормального сечения. Эта поверхность может быть образована двояко. В обоих случаях в качестве направляющей линии используется винтовая. По винтовой линии перемещается образующая окружность, причем центр ее скользит по винтовой, а плоскость окружности во все время движения остается перпендикулярной (нормальной) к винтовой. Для изображения поверхности более удобно пользоваться вторым способом образования поверхности с помощью шара, центр которого скользит по винтовой линии. Проекции перемещающегося шара изображаются на комплексном чертеже в виде ряда окружностей, касательно к которым должны быть проведены огибающие кривые (рис. 302). Оба способа образования поверхности винтового цилиндра известны, так как они аналогичны способам образования тора. На фронтальной проекции очерка поверхности, при известном соотношении радиуса винтовой линии, шага и радиуса образующей окружности появляются точки возврата А2, В2 и др., встречавшиеся ранее при изображении наклонно расположенного кругового кольца.
Поверхность винтового цилиндра круглого нормального сечения встречается в змеевиках и пружинах. Меридианное сечение поверхности представляет собой кривую, похожую на эллипс; в практике технического черчения ее условно заменяют окружностью.
Рис. 301. Наклонный геликоид и его применение. Рис. 302. Пример винтового цилиндра — змеевик, пружина
Винтовые поверхности
На (фиг.366, а и б) показаны проекции винтовых поверхностей, образованных от движения отрезка, который своими концами перемещается по цилиндрической винтовой линии, находясь постоянно в плоскости, проходящей через ось вращения цилиндра (в плоскости меридионального сечения). Вид винтовой поверхности зависит от наклона отрезка по отношению к оси вращения цилиндра.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--