Реферат: Вентовые Поверхности
Обе эти винтовые поверхности можно встретить на винтах с упорной резьбой.
Винтовые линии, образованные точками А и В, соединены касательными прямыми условно, так как фактически они получаются пологими кривыми, приближающимися к прямым(фиг.366,б)
Винтовая поверхность , поверхность, описываемая линией L, которая вращается с постоянной угловой скоростью вокруг неподвижной оси OO" и одновременно перемещается поступательно с постоянной скоростью вдоль этой оси (рис. 1). Винтовая поверхность, описываемая прямой, называется геликоидом (от греч. hélix, родительный падеж hélikos — спираль и éidos — вид). Если эта прямая пересекает ось OO" под прямым углом, то геликоид называется прямым (рис. 2). Прямой геликоид является минимальной поверхностью . Любая Винтовая поверхность может перемещаться по себе. Это свойство используется в технике (например, для устройства червячных передач). Винтовая поверхность может быть посредством изгибания наложена на поверхность вращения. В частности, прямой геликоид можно изогнуть Катеноид.
Рис. 1 к ст. Винтовая поверхность. Рис. 2 Винтовая поверхность.
Минимальные поверхности , поверхности, у которых средняя кривизна во всех точках равна нулю (см. Кривизна). Минимальные поверхности появляются при решении следующей вариационной задачи: в пространстве дана некоторая замкнутая кривая; среди всех возможных поверхностей, проходящих через эту кривую, найти такую, для которой часть её, заключённая внутри кривой, имела бы наименьшую площадь (минимальную площадь - отсюда название). Если заданная кривая - плоская, то решением, очевидно, будет ограниченный этой кривой кусок плоскости. В случае неплоской кривой необходимое условие, которому должна удовлетворять поверхность с минимальной площадью, было установлено Ж. Лагранжем в 1760 и несколько позже истолковано геометрически Ж. Мёнье в форме, эквивалентной требованию, чтобы средняя кривизна обращалась в нуль. Хотя это условие не является достаточным, т. е. не гарантирует минимума площади, однако впоследствии название «Минимальные поверхности» было сохранено за всякой поверхностью с нулевой средней кривизной. Если предположить поверхность заданной уравнением z = f (х, у), то, приравнивая нулю выражение для средней кривизны, приходят к дифференциальному уравнению с частными производными 2-го порядка:
(1 + q2)r - 2pqs + (1 + p2)t = 0,
где
Исследованием этого уравнения в различных формах занимались многие математики, начиная с Ж. Лагранжа и Г. Монжа. Примерами Минимальные поверхности могут служить: обыкновенная винтовая поверхность; катеноид - единственная (вещественная) Минимальные поверхности среди поверхностей вращения; «поверхность Шерка», определяемая уравнением
Минимальные поверхности имеет во всех точках неположительную полную кривизну. Бельгийский физик Ж. Плато предложил способ экспериментального осуществления Минимальные поверхности при помощи мыльных плёнок, натянутых на проволочный каркаст. Винт
Изгибание (математическое), деформация поверхности, при которой длина каждой дуги любой линии, проведённой на этой поверхности, остаётся неизменной. Наглядный пример Изгибание - свёртывание листа бумаги в цилиндр или конус (при условии, что бумага нерастяжима; поэтому длина каждой дуги любой линии, проведённой на бумаге, остаётся неизменной). Напротив, раздувание шарика, изготовленного из тонкой резиновой плёнки, представляет собой пример деформации, которая не будет Изгибание
Изгибание поверхностей изучается в дифференциальной геометрии. Одна из теорем этой области - теорема Гаусса: при Изгибание поверхности произведение её главных кривизн (полная кривизна) в каждой точке остаётся неизменным. Из этой теоремы следует, что никакой кусок сферы при помощи Изгибание нельзя превратить в кусок сферы другого радиуса или придать ему плоскую форму. В современной дифференциальной геометрии особенно важное место занимают исследования возможности или невозможности Изгибание различных поверхностей. Доказано, что каждая замкнутая выпуклая поверхность (например, целая сфера, целый эллипсоид) не может изгибаться; если же из такой поверхности вырезать сколь угодно малый кусок, то оставшаяся часть будет допускать Изгибание Доказательство получено благодаря работам немецкого математика С. Кон-Фоссена и советских математиков А. Д. Александрова и А. В. Погорелова. Исследование Изгибание поверхности имеет важное значение для теории тонких оболочек в механике
Катеноид (от лат. catema - цепь и греч. éidos - вид), поверхность, образуемая вращением цепной линии вокруг её оси; принадлежит к числу минимальных поверхностей. Форму Катеноид принимает мыльная плёнка (см. рис.), «натянутая» на 2 проволочных круга, плоскости которых перпендикулярны линии, соединяющей их центры.овая поверхность.на катеноид.