Реферат: Вещественная, структурная и фазовая неоднородность пород, а также физические свойства горных пор

Сверхкапилляры - поры, имеющие диаметр dэф > 10-4 м. Доля воды, связанной капиллярными силами и силами адсорбции с твердой фазой, сравнительно невелика, поэтому пластовая вода в этих порах может двигаться в основном под действием силы тяжести. Сверхкапиллярные поры характерны для слабосцементированных галечников, гравия, крупно- и среднезернистых песков, обломочных разностей карбонатных пород; в зонах выщелачивания карбонатных пород они могут достигать весьма больших размеров (каверны, карсты).

Капилляры это поры с dэф = 10-7 - 10-4 м . В них радиус менисков, образовавшихся на границе двух фаз в результате поверхностного натяжения, таков, что они препятствуют движению воды под действием силы тяжести, т. е. вода в этих порах удерживается капиллярными силами. Капиллярные поры типичны для сцементированных песчаников, обломочных и кристаллических известняков, доломитов.

В субкапиллярных порах (dэф = 2*10-9 – 1*10-7 м) велика доля воды, на которую действуют адсорбционные силы со стороны твердой поверхности. Поры в этом случае заполнены водой, которая практически не способна к перемещению в поле силы тяжести или под влиянием капиллярных сил. Субкапиллярные поры свойственны глинам, мелкокристаллическим и мелоподобным известнякам, доломитам, трепелам, пепловым туфам и другим тонкозернистым породам. В отсутствие трещиноватости все эти породы не являются коллекторами.

В микропорах (dэф < 2*10-9 м), диаметр которых соизмерим с толщиной слоя прочносвязанной воды, пластовая вода при температурах менее 70 °С практически неподвижна. Микропоры установлены у некоторых природных цеолитов.

Трещиноватость наиболее характерна для плотных, низкопористых горных пород. Происхождение трещин чаще всего тектоническое, хотя в природе можно встретить трещины диагенеза (доломитизация карбонатов), трещины уплотнения и трещины автогидроразрыва в зонах образования аномально высоких пластовых давлений.

По характеру взаимной связи между порами и движению флюидов в породе различают общую, открытую, эффективную и динамическую пористости.

Виды пористости:

Коэффициентом открытой пористости кп.о оценивается объем пор, сообщающихся между собой в породе и с окружающей средой.

кп.о = Vп.о /V

где Vп.о – объем открытых пор в породе.

Открытую пористость определяют путем взвешивания сухих и насыщенных керосином образцов пород (метод Преображенского). Взвешивают сухой образец, затем насыщают керосином (т. к. керосин обладает хорошей текучестью) и взвешивают, получают разность масс, и, зная, плотность керосина, высчитывают его объем в образце, т. е. коэффициент открытой пористости.

В настоящее время при определении открытой пористости большинство крупных компаний используют метод газовой порометрии. Чаще всего это установка APP 608. Измерения порового объема выполняются с использованием принципа расширения гелия по закону Бойля. Закон Бойля гласит, что давление (P) какого-либо идеального газа, умноженное на его объем (V), дает постоянное значение (при постоянной температуре): P1 *V1 =P2 *V2 , при Т=const.

В установке для измерения пористости используется "Регулятор изменения объема". Когда стабилизируется давление и записывается значение P1 ,объем системы с помощью "Регулятора изменения объема" изменятся на известную величину (Δ V) и после стабилизации давления измеряется P2 , таким образом можно рассчитать неизвестный объем (V):

P1 *V=P2 *(V+ Δ V) => V= P2 * Δ V/( P1 - P2 ).

Коэффициент эффективной пористости кп.эф , (понятие введено Л. С. Лейбензоном) характеризует полезную емкость породы для углеводородов (нефти или газа) и представляет собой объем открытых пор за исключением объема, заполненного физически связанной пластовой водой, которую нельзя удалить из образца под воздействием капиллярных сил. Объем такой воды в образце характеризуется коэффициентом остаточной водонасыщенности кв.о. :

кп.эф = (Vп.о . - Vв.св )/V = кп.о (1 - кв.о )

где Vв.св — объем связанной воды.

Однако не весь объем нефти или газа, заполняющих полезную емкость горных пород, можно привести в движение при разработке месторождений. Определенная часть их, находящаяся в мелких и тупиковых порах, при реализуемых градиентах давления вытесняющей жидкости остается в порах без движения.

Коэффициент динамической пористости кп.д показывает, в какой части объема породы при заданном градиенте давления может наблюдаться движение жидкости или газа. Этот объем определяют как разницу между объемом эффективных пор (Vп.о . – Vв.св ) и объемом пор Vн.о занятых остаточной нефтью:

кп.д = (Vп.о . – Vв.св – Vн.о )/V = (Vп.эф – Vн.о )/V = кп.о (1 – кв.о – кн.о )

Некоторая неопределенность данного выражения заключается в том, что величина кп.д зависит не только от свойств породы, но и от величины приложенного градиента давления и времени вытеснения керосина другим флюидом. Так, при длительном приложении высоких градиентов давления вытеснения кп.д —> кп.эф . Однако при низких градиентах давления вытеснения, как правило, кп.д < кп.эф .

В заключение этого раздела необходимо указать на следующую закономерность в величине коэффициентов пористости, определенных на одном образце:

кп > кп.о > кп.эф > кп.д .

ПОРИСТОСТЬ ОСАДОЧНЫХ ПОРОД

Осадочные породы, по М. С. Швецову, можно подразделить на три большие группы: 1) обломочные; 2) хемогенные и биогенные; 3) глинистые.

Наибольшую роль при формировании осадочных толщ играют обломочные, карбонатные, глинистые, соляные и сульфатные породы.

Пористость обломочных, карбонатных и глинистых пород изменяется в широких пределах. Ее конкретное значение для каждой породы определяется многими факторами. Однако наиболее значимыми из них являются: максимальная глубина погружения, интенсивность вторичных процессов, температура, возраст пород и содержание глинистых минералов.

Структура порового пространства.

Поровое пространство горной породы, является весьма сложным по своей форме и состоит из сочетания пор разных размеров. Как мы уже разобрались одни поры хорошо проводят флюиды, другие — заполнены адсорбированной и капиллярно-удержанной водой.

Характер распределения пор по размерам обычно называют структурой порового пространства изучаемой породы. Существуют прямые и косвенные методы изучения структуры порового пространства. К прямым методам относятся оптические, например, исследование микрофотографий шлифов (А. Ф. Богомолова, Н. А. Орлова, 1961 г.) и с помощью электронной микроскопии, к косвенным — капиллярные методы.

Оптические методы характеризуют распределение пор на плоскости, и требуются многократные исследования на параллельных плоскостях для представления об изменении пор в объеме.

Капиллярные методы характеризуют структуру порового пространства в объеме, но они, как правило, не могут быть использованы для изучения трещиновато-кавернозных пород.

Известны три разновидности капиллярных методов: 1) полупроницаемой мембраны; 2) ртутной порометрии; 3) капиллярной пропитки.

В методе полупроницаемой мембраны из водонасыщенного образца, установленного на водонасыщенной искусственной мембране размером пор 2*10-6 м, азотом вытесняют воду и строят зависимость величины водонасыщенности образца от величины капиллярного давления. Из уравнения Лапласа вычисляют эффективные диаметры пор, соответствующие каждой точке давления р к , а по изменению водонасыщенности — относительное содержание этих пор в объеме породы. Строят график распределения пор в образце по их размерам.

Размер пор полупроницаемой мембраны ограничивает нижний предел изучения пор. Радиусы пор вычисляют в диапазоне (2-100)*10-6 м.

Пленку смачивающей жидкости (воды) на поверхности пор породы трудно учесть в расчетах, что снижает точность определения распределения пор.

В методе ртутной порометрии в вакуумированный образец нагнетают ртуть. Чем меньше диаметр пор, тем большее давление нужно приложить для преодоления капиллярных сил. Строят зависимость капиллярного давления рк от насыщенности образца ртутью, затем — кривую распределения пор.

Диапазон изучаемых пор при работе с этим методом расширяется до (0,01-100)*10-6 м.

К-во Просмотров: 174
Бесплатно скачать Реферат: Вещественная, структурная и фазовая неоднородность пород, а также физические свойства горных пор