Реферат: Вещественная, структурная и фазовая неоднородность пород, а также физические свойства горных пор
В методе капиллярной пропитки смачивающая люминесцирующая в ультрафиолетовом свете жидкость под воздействием капиллярных сил впитывается образцом. С помощью автоматической фотометрической установки наблюдают за изменением окраски верхнего торца образца под влиянием впитывающейся жидкости. Дополнительное изучение извилистости поровых каналов электрическими методами позволяет проводить моделирование порового пространства.
Эти капиллярные методы основаны на применении уравнения Лапласа:
рк = 2σcosθ/r
где σ — поверхностное натяжение на границе смачивающей фазы и несмачивающей фазы; r — радиус капилляра; θ — угол смачивания, для гидрофильной поверхности θ < 90°.
Поверхностное натяжение . У молекул поверхностного слоя потенциальная энергия вдвое выше, чем у молекул внутри жидкости. Стремясь занять положение с наименьшей потенциальной энергией, молекулы жидкости на поверхности стремятся втянуться внутрь жидкости. Таким образом, жидкость под действием внутренних сил молекулярного притяжения стремится уменьшить свободную поверхность (то есть поверхность соприкосновения с воздухом). Примерами этого служат шарообразность капель дождя или мыльного пузыря: шар - это тело, имеющее при данном объеме наименьшую площадь поверхности.
Смачивание . Если жидкость контактирует с твердым телом, то существуют две возможности: 1) молекулы жидкости притягиваются друг у кругу сильнее, чем к молекулам твердого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведет себя ртуть на стекле, вода на парафине или "жирной" поверхности. В этом случае говорят, что жидкость не смачивает поверхность, такая поверхность называется гидрофобной;
2) молекулы жидкости притягиваются друг у кругу слабее, чем к молекулам твердого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведет себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность, такая поверхность называется гидрофильной.
Угол смачивания это угол между смачиваемой поверхностью и прямой направленной по касательной к поверхности смачивающей фазы в точке контакта.
а б
Рисунок а капля на поверхности твердой фазы, б капилляр над поверхностью свободной воды.
Ранее предполагалось, что поверхность твердой фазы полностью гидрофильна. В этом случае пленка воды равномерно покрывает поверхность, все активные центры поверхности заняты молекулами воды или гидратированными катионами. Однако, реальные коллекторы нефти и газа в пластовых условиях нередко бывают частично гидрофобными. Это значит, что часть поверхности пор водой не смачивается; в пределах этих «островов» отсутствует пленка воды, а нефть или газ непосредственно граничат с поверхностью твердой фазы.
Избирательная смачиваемость поверхности твердой фазы водой определяется величиной угла смачивания θ на границе воды и другой подвижной фазы в капилляре (воздух, газ, нефть). При θ=0 поверхность считается полностью гидрофильной; при 0<θ<90° поверхность преимущественно гидрофильна; при 90°< θ <180°—преимущественно гидрофобна; при θ =180° — полностью гидрофобна.
Преимущественно гидрофобны твердые битумы и ископаемые угли. Глины и агрегаты глинистых минералов в породах коллекторах (глинистый цемент), как правило, гидрофильны, если не считать глинистых нефтематеринских отложений (например, породы баженовской свиты на территории Западной: Сибири).
Гидрофобизация породы-коллектора оказывает существенное влияние на величину подсчетных параметров и эффективность разработки месторождения, поэтому необходимы учет степени гидрофобизации и количественная ее оценка.
В основе количественной оценки лежит сравнение результатов эксперимента, выполненного по одной и той же программе на «сыром» образце, извлеченном из скважины, с предполагаемой частичной гидрофобностью, и на том же образце, прошедшем экстракцию — обработку органическими растворителями, в результате которой частично гидрофобный образец становится полностью гидрофильным. Качественный признак частичной гидрофобности «сырого» образца — изменение результатов эксперимента после экстракции.
Гранулометрический состав осадочных пород.
Как мы говорили: размерность, однородность, сортировка оказывают большое влияние на структуру порового пространства поэтому очень полезно иметь представление о гранулометрическом составе.
Под гранулометрическим составом породы понимается относительное содержание в ней (по массе) частиц различных размеров. Для определения гранулометрического состава выполняется гранулометрический (механический) анализ. Он заключается в расчленении породы на группы с близкими по величине частицами (фракциями). Размеры частиц горных пород изменяются в очень широких пределах — от 1 мкм или 0,001 мм (частицы глинистых и коллоидно-дисперсных минералов) до сотен миллиметров (галька, валуны).
К старым методам относятся ситовый и седиментационный анализ. Зерна и частицы диаметром от 0,1 до 10 мм, определяются методом ситового анализа. Частицы диаметром < 0,1 мм, определяются отмучиванием в спокойной воде так называемым седиментационным анализом.
Современные методы основаны на принципе дифракции лазерных лучей для получения информации о размерах частиц и их распределении. Microtrac X 100 диапазон измеряемых частиц от 0.04 до 704*10-6 м.
От размера частиц дисперсных пород зависит их суммарная поверхность. Общее представление о суммарной поверхности дает удельная поверхность. Под удельной поверхностью Sп понимают суммарную поверхность всех частиц, заключенных в кубическом метре или в одном килограмме породы.
где dэф — эффективный диаметр несферического зерна, принимаемого за сферическое.
Минимальными значениями удельной поверхности обладают хорошо отсортированные, хорошо окатанные, слабо сцементированные средне- и крупнозернистые породы.
Наибольшую удельную поверхность имеют природные адсорбенты: глины, бокситы, туфовые пеплы.
Удельная поверхность осадочных и обломочных пород зависит от минерального и гранулометрического состава, формы зерен, наличия цемента и его типа. Она возрастает с уменьшением среднего диаметра частиц и увеличением содержания глинистого цемента. Однако, значения S определяются в основном глинистостью пород.
Глинистость осадочных горных пород характеризуется содержанием в минеральном скелете породы частиц с эффективным диаметром менее 10 мкм. Глинистость устанавливают обычно по данным гранулометрического анализа и рассчитывают по формуле:
где Сгл — массовая глинистость в долях единицы; mтв — масса сухой навески анализируемого порошка — твердой фазы минерального скелета породы; m<0.01 — масса фракции с dэф < 10 мкм.
Достоверность определения Сгл зависит от технологии выполнения стандартного гранулометрического анализа в лабораториях петрографии и физики пласта: исследуемый образец экстрагируют в аппарате Сокслета, далее его дезинтегрируют, превращая в порошок, и обрабатывают 5—10%-ным раствором соляной кислоты, после чего отмывают полученный порошок в дистиллированной воде, высушивают в термостате при температуре 105 °С и приступают к гранулометрическому анализу. Отметим по крайней мере два существенных недостатка методики, обусловливающих погрешность в определении Сгл .
При дезинтегрировании (истирании) образца не гарантируется переход в порошок всех частиц с dэф <10 мкм, поскольку часть их находится в зернах полевых шпатов и других минералов, частично преобразованных и содержащих в себе эти частицы.