Реферат: Вычисление матрицы в MS Excel

Например, для матриц А и В из предыдущего примера:

В частности, произведение матрицы А на число 0 есть нулевая матрица, то есть 0 × А = 0.

В MSExcel для выполнения операции умножения матрицы на число могут быть использованы формулы, вводимые в соответствующие ячейки.

Пример 1.5. Пусть, как и в предыдущем примере матрица А введена в диапазон А1:С2. Необходимо получить матрицу С = 3 × А.

Решение

1. Табличный курсор поставить в левый верхний угол результирующей матрицы, например в Е1.

2. Введите формулу для вычисления первого элемента результирующей матрицы = 3*А1.

3. Скопируйте введённую формулу в остальные ячейки результирующей матрицы: установите табличный курсор в ячейку Е1; наведите указатель мыши на точку в правом нижнем углу ячейки так, чтобы указатель принял вид тонкого крестика; при нажатой левой кнопке мыши протяните указатель до ячейки G1; затем так же протяните указатель мыши до ячейки G2.

В результате в ячейках E1:G2 появится матрица, равная исходной матрице, умноженной на постоянную – 3.

Умножение матриц

Произведение матриц определено, если число столбцов первой матрицы равно числу строк второй.

Пусть А = (aij ) m×n, B = (bij ) n×p, тогда размерность произведения А×В равна m×p. При этом матрица С называется произведением матриц А и В, если каждый её элемент cij равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-го столбца матрицы В:

Таким образом, перемножение матриц осуществляется по следующему правилу:

Пусть, например,

Многие свойства, присущие операциям над числами, справедливы и для операций умножения матриц.

Для матриц верны общие свойства операции умножения.

1. А(ВС) = (АВ)С – ассоциативность.

2. А(В+С) = АВ + АС – дистрибутивность.

3. (А + В)С + АС + ВС.

4. (αА)В = А(αВ) = α(АВ), α – константа.

Однако имеются и специфические свойства операций умножения матриц.

5. Умножение матриц некоммутативно – АВ ≠ ВА.

В частном случае коммутативным законом обладает произведение любой квадратной матрицы А n-го порядка на единичную матрицу Е того же порядка, причем это произведение равно А.

6. Если Е – единичная матрица, то ЕА = А; ЕВ = В.

Таким образом, единичная матрица играет при умножении ту же роль, что и число 1 при умножении чисел.

7. Из того, что А × В = 0, не следует, что А = 0 или В = 0.

В алгебре матриц нет действия деления. Выражение А/В не имеет смысла. Его заменяют два различных выражения В-1 × А и А × В-1 , если существует В-1 .

К-во Просмотров: 329
Бесплатно скачать Реферат: Вычисление матрицы в MS Excel