Реферат: Выполнение операций умножения и деления в ЭВМ
СОДЕРЖАНИЕ
Введение
1. Выполнение операции умножения в ЭВМ
2. Умножение чисел, представленных в форме с плавающей запятой
3. Методы ускорения операции умножения
4. Матричный метод умножения
5. Выполнение операции деления в ЭВМ
5.1 Деление чисел с восстановлением остатков
5.2 Деление без восстановления остатков
6. Способы ускоренного деления
7. Деление чисел в машинах с плавающей запятой
Выводы
Литература
Введение
Тема реферата «Выполнение операций умножения и деления в ЭВМ».
Цель работы – ознакомится с выполнением операций умножения и деления в ЭВМ, как с фиксированной, так и с плавающей запятой.
1. Выполнение операции умножения в ЭВМ
Операция умножения является наиболее частой после сложения. Умножение может выполняться суммированием сдвинутых на один или несколько разрядов частичных произведений, каждое из которых является результатом умножения множимого на соответствующий разряд (разряды) множителя.
При точном умножении двух чисел количество значащих цифр произведения может в пределе достичь двойного количества значащих цифр сомножителей. Еще сложнее возникает ситуация при умножении нескольких чисел. Поэтому в произведении только в отдельных случаях используют двойное количество разрядов.
Наиболее просто операция умножения выполняется в прямом коде. При этом на первом этапе определяется знак произведения путем сложения знаковых разрядов сомножителей по модулю 2, затем производится перемножение модулей сомножителей согласно двоичной таблице умножения. Результату присваивается полученный знак.
Так как умножение производится в двоичной системе счисления, частные произведения либо равны 0 (при умножении на 0), либо самому сомножителю (при умножении на 1), сдвинутому на соответствующее количество разрядов.
Произведение можно получить двумя путями:
1) сдвигом множимого на требуемое количество разрядов и прибавлением полученного очередного частичного произведения к ранее накопленной сумме частичных произведений;
2) сдвигом суммы ранее полученных частичных произведений на каждом шаге на 1 разряд и последующим прибавлением к сдвинутой сумме неподвижного множимого либо 0.
Причем каждый из этих методов может различаться еще и тем, с младших или со старших разрядов начинается умножение.
Пример.
А=0,1101; В=0,1011;
1а) 0,1101 1б) 0,1101
0,1011 0,1011
1101 1101
1101 0000
0000 1101
1101 1101
10001111 10001111
Основываясь на вышеизложенном можно создать 4 основных метода машинного умножения в прямом коде:
1) умножение младшими разрядами множителя со сдвигом накапливаемой суммы частных произведений вправо;
2) умножение младшими разрядами множителя со сдвигом множимого влево;
3) умножение старшими разрядами множителя со сдвигом накапливаемой суммы частных произведений влево;
4) умножение старшими разрядами множителя со сдвигом множимого вправо;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--