Реферат: Взаимодействия белков с РНК – структурный компьютерный анализ

Дополнительно используют модификации белка генно-инженерными или биохимическими методами, которые заключаются в замене или химической модификации аминокислотных остатков или же в удалении части полипептидной цепи с последующей проверкой константы связывания.

1.3. Современные методы исследования РНК-белковых взаимодействий

1.3.1. Биохимические методы

К биохимическим методам относятся определение констант связывания на фильтрах, подвижность в геле и центрифугирование в градиенте сахарозы.

1.3.1.1. Связывание на фильтрах

Является стандартно используемой методикой для определения РНК-белковых взаимодействий и оценки константы связывания. Принцип данного метода основан на способности нитроцеллюлозных фильтров удерживать белки, а также связанные РНК, пока несвязанные РНК проходят через фильтр. Несмотря на свою концептуальную простоту, метод всё же не является достаточно надёжным и не подходит для изучения некоторых РНК-белковых комплексов: он хорошо работает для сравнительно небольших молекул РНК, большие же молекулы РНК-белковых комплексов часто не удерживаются.

Методика заключается в том, что эквимолярные количества радиоактивной РНК смешиваются с белком в различной концентрации и фильтруются через нитроцеллюлозные фильтры. В идеале при высокой концентрации белка должно удерживаться до 100% РНК, в действительности же этот процент значительно меньше. Кроме того, белковые фракции также могут не удерживаться фильтром. Например, при анализе взаимодействия белка L18 с 5S рРНК было обнаружено, что эффективность связывания комплекса 5SрРНК-L18 составляла 35% при удержании 65% белка L18, и < 5% для свободной 5S рРНК. Тем не менее, точность измерения не зависит непосредственно от эффективности задерживания.

На оценку эффективности связывания влияют многие параметры, и они должны быть оптимизированы для каждого конкретного случая:

Буфер: Повышение концентрации солей уменьшает эффективность связывания. Для большинства комплексов концентрация одновалентных ионов должна составлять около 150 mM, чтобы гарантировать специфичность связываться.

Температура: Низкая температура увеличивает эффективность связывания.

Скорость подачи буфера и условия промывки: скорость подачи буфера должна быть постоянной (одной и той же) в каждом эксперименте. Неспецифическое удержание несвязанного РНК на фильтре можно уменьшать интенсивной промывкой, но зачастую это ведёт и к снижению специфической сорбции в целом. Поэтому для некоторых комплексов применяется промывка небольшим объёмом, в то время как для других комплексов наилучшие результаты получаются при промывке большими объёмами.

Ренатурация РНК: хорошо известно, что разные препараты РНК дают различную эффективность связывания. Тщательная ренатурация уменьшает вариабельность между этими препаратами [23].

1.3.1.2. Подвижность в геле

Оценка подвижности в геле основана на различии в подвижности между свободными РНК и РНК-белковыми комплексами при их миграции в нативном полиакриламидном геле. Возрастающий размер комплекса, а также небольшой положительный заряд связанных с белками нуклеиновых кислот вызывает различие в их подвижности.

Метод позволяет напрямую оценить стехиометрию РНК-белкового комплекса. Если связывается более чем один белок, то видны дополнительные сдвиги (supershifts) в мобильности РНК. При добавления антител, эту особенность можно использовать для идентификации белков в комплексе, когда для образования комплекса используются неизвестные препараты белка.

Основная проблема выполнения данной методики – это выбор условий, обеспечивающих специфическое РНК-белковое связывание. Главное при этом - выдержать высокую концентрацию солей (300-500 mM NaCI или KC1), но при этом надо учитывать, что высокая концентрация соли зачастую увеличивает и процент диссоциации комплекса при электрофорезе. Таким образом, концентрация солей должна быть оптимизирована в зависимости от конкретного эксперимента. Многие эксперименты по определению подвижности в геле РНК-белковых комплексах изучаются в 50 mM трис-глициновых буферах, а, например, специфические комплексы Escherchia coli требуют по крайней мере дополнительного добавления 150 mM Na и 5 mM Mg.

Если комплекс чувствителен к повышению солевой концентрации, неспецифическое связывание может быть уменьшено добавлением носителя РНК [23].

1.3.1.3. Центрифугирование в сахарозном градиенте

Центрифугирование в градиенте сахарозы является наиболее простым, но в тоже время менее чувствительным методом анализа РНК-белковых комплексов, основным достоинством которого являются значительно большие возможности при выборе ионных условий, чем, например, при использовании электрофоретических методов. При применении возможно формирования специальных градиентов, таких как изокинетический градиент для определения коэффициентов седиментации.

Наиболее распространённым типом градиента является линейный градиент сахарозы. Поскольку рибонуклеопротеиновые комплексы более плотные по сравнению с максимально возможной плотностью сахарозы (1.3 г/мл), они всегда образуют осадок в нижней зоне. Так что выбор градиента для разделения определяется зависимостью от количества осаждённой части: 5-20% (w/w) градиент обычно выбирается для разделения малых нуклеопротеинов, 10-30% (w/w) градиент - для разделения сплайсосом, рибосомных субъединиц и моносом, поскольку 20-47% (w/w) градиент - для объектов полисомных размеров [23].

1.3.2. Физические методы

Основаны на решении пространственных структур РНК-белковых комплексов с атомарным разрешением. К этим методам относят метод ядерного магнитного резонанса (ЯМР) и метод рентгеноструктурного анализа.

Метод ЯМР позволяет видеть структуру макромолекулы в растворе без ограничений на взаимное расположение атомов, накладываемых кристаллической упаковкой. В настоящее время из-за сложности и величины РНК-белковых комплексов сфера его применения сильно ограничена.

Наиболее эффективным и универсальным методом определения трёхмерной структуры РНК-белковых комплексов с атомным разрешением является рентгеноструктурный анализ. Метод основан на свойстве биологических макромолекул образовывать монокристаллы, представляющих собой множество идентичных молекул, упорядоченных определенным образом. С кристаллов возможно получение рентгеновской дифракционной картины, с последующим анализом полученных данных и построении на их основе карты электронной плотности. Затем получают пространственную модель структуры, которая после ряда уточнений минимизируется по химической и кинетической энергиям [5].

Наряду с методом ядерного магнитного резонанса, рентгеноструктурный анализ также не лишён своих недостатков, наиболее значимыми из которых являются проблема кристаллизации РНК-белковых комплексов (необходимо наличие достаточно крупных, стабильных и однородных кристаллов), а так же фазовая проблема, решаемая методами изоморфного замещения, молекулярного замещения и аномальной дисперсии на нескольких длинах волн.

В последние годы, благодаря использованию синхротронного излучения, новых типов детекторов, а также разработке новых программ для обработки данных и расчёта фаз, метод рентгеноструктурного анализа получил наиболее широкое распространение.

2. Экспериментальная часть

2.1. Материалы и методы исследования

2.1.1. Метод молекулярного замещения

Для решения проблемы фаз в данной работе использовался метод молекулярного замещения. Метод основан на использовании известной структуры гомологичной молекулы (белка, РНК или ДНК) в качестве модели для получения начального приближения набора фаз [16].

Для расчета начального набора фаз необходимо, чтобы модель наилучшим образом аппроксимировала положения неизвестной молекулы в элементарной ячейке кристалла. Определение таких положений модели является основной задачей метода молекулярного замещения, которая обычно решается в два этапа. На первом этапе определяется ортогональное преобразование W, обеспечивающее правильную ориентацию модели в кристаллической ячейке. На втором этапе проводится поиск вектора трансляции v, задающего положение ориентированной модели в элементарной ячейке кристалла. Чаще всего, вышеупомянутое ортогональное преобразование выражается через углы Эйлера или сферические углы [37].

Функции вращения

Преобразование  можно найти путем сравнения функций Паттерсона кристалла неизвестной молекулы Px и модели Pm. Критерием соответствия ориентации модели и неизвестной молекулы служит так называемая функция вращения, которая представляет собой интеграл перекрывания функций Px(r) и Pm(r) в элементе объема U и имеет максимумы если системы внутренних векторов модели и неизвестной молекулы ориентированы одинаково. Существуют методы расчета функции вращения как в прямом [22] так и в обратном пространстве [37]. В случае прямого пространства функции Паттерсона Px и Pm рассчитываются в явном виде при заданном разрешении с помощью преобразования Фурье. Затем происходит вращение Pm относительно Px с заданным шагом и ищутся максимумы функции вращения:

, (1)

где область интегрирования U - как правило сферический слой с центром в начале координат, задающийся минимальным и максимальным радиусами rmin и rmax, соответственно. Радиус rmin выбирается таким образом, чтобы исключить пик функции Паттерсона в начале координат (обычно rmin ³ 2Å), который может порождать ошибки при численном интегрировании. Радиус rmax выбирается так, чтобы включить в область интегрирования максимальное количество внутримолекулярных векторов при минимально-возможном количестве межмолекулярных [5].

Для уменьшения расчетных затрат при численном интегрировании на сетке используются только те точки, в которых функция Pm принимает наибольшие значения, а значения функции Px в этих точках рассчитываются с помощью процедуры интерполяции [22].

Применяя преобразование Фурье и теорему Парсеваля для уравнения (1) можно получить выражение для функции вращения в обратном пространстве [37]:

, (2)

где h = (h,k,l) обозначает миллеровские индексы, а - транспонированную матрицу оператора . Действие  на |Fm(h)|2 будет в общем случае приводить к возникновению точек в обратном пространстве, которые не описываются целочисленными индексами (h,k,l). Значения |Fm(h)|2 в таких точках могут быть получены с помощью так называемой интерференционной функции G [2]:

К-во Просмотров: 205
Бесплатно скачать Реферат: Взаимодействия белков с РНК – структурный компьютерный анализ