Реферат: Задачи по Математике
Задачи № 21-30. Найти общее и частное частное решение линейного однородного дифференциального уравнения второго порядка, соответствующего начальным условиям:
при , , .
21) ;
Решение
Составим характеристическое уравнение имеет вид:
Следовательно, общее решение уравнения без правой части таково:
Так как n=1 не является корнем характеристического уравнения, то ищем частное решение уравнения с правой частью в виде
Подставляя эти выражения в наше неоднородное уравнение, получим
Итак, частное решение уравнения с правой частью есть
Общее же решение этого уравнения на основании предыдущей теоремы имеет вид:
Найдем частные решения:
Задачи № 31-40
38) В группе из 25 студентов, среди которых 10 девушек, разыгрываются 5 путевок. Найти вероятность того, что среди обладателей путевок окажутся две девушки.
Решение
Задача решается с помощью классической формулы для вычисления вероятностей:
Ответ:
Задачи № 41-50
Закон распределения дискретной случайной величины Х задан в таблице. Найти: 1)математическое ожидание, дисперсию и среднее квадратическое отклонение; 2) вычислить математическое ожидание и дисперсию случайной величины , пользуясь свойствами математического ожидания и дисперсии.
Номер задачи | Условие задачи | |||||
4 1 | xi | 2 | 4 | 6 | 8 | 10 |
pi | 0,2 | 0,3 | 0,1 | 0,2 | 0,2 |
Решение
Расчет ведем по формулам для числовых характеристик дискретных случайных величин.
Математическое ожидание: