Реферат: Задачи синтеза оптимальных систем управления
Так как сигнал и помеха некоррелированы и Kи (p) = 1, то выражение имеет вид:
Определим Кф (j w)
Используя операцию расщепления, представим выражение для частотной характеристики оптимальной системы в виде реализуемой и нереализуемой части
При этом
Значения А и В найдем методом неопределенных коэффициентов
С учетом полученных выражений
При этом передаточная функция представляет аппериодическое звено
Где
Пример 2. Рассмотрим задачу фильтрации с дифференцированием. Определить оптимальную передаточную функцию - K0 (p) устойчивой и физически реализуемой системы рис.3.
Дано: Полезный сигнал - X (t) и помеха - Z (t), представляющие собой Гауссовские случайные процессы.
Kи (p) = р;
|
|
Решение: Так как полезный сигнал - X (t) и помеха - Z (t) представляют собой Гауссовские случайные процессы, то решение может быть найдено в классе линейных стационарных систем.
Выражение для частотной характеристики оптимальной системы с учетом физической реализуемости имеет вид:
Так как сигнал и помеха некоррелированны то выражение имеет вид:
Определим Кф (j w)
где
Используя операцию расщепления, представим выражение для частотной характеристики оптимальной системы в виде реализуемой и нереализуемой части