Реферат: Загальні положення теорії ймовірностей та математичної статистики

1. Основні поняття та визначення:

1.1. поняття стохастичної с-ми експерименту, ймовірності, випадкової величини.

1.2. імовірнісний розподіл.

1.3. мода, математичне сподівання, дисперсія, середньоквадратичне відхилення випадкової величини.

1.

1.1. Як правило досліджувана система містить ряд елементів, що мають певну невизначеність. Такі системи називаються стохастичними, оскільки їх поведінка не може бути однозначно прогнозована.

Експеримент – це строга послідовність наперед заданих дій спрямована на отримання однієї або декілька величин, які є результатом експерименту.

Результати експерименту можуть змінюватись неперервно (температура, довжина, вологість) або дискретно (кількість зумовлено на обслуговування, кількість сонячних днів у році). Якщо в ході повторень експерименту в одних і тих же умовах результати будуть різні в силу внутрішньої природи досліджуваного явища, то це означає, що досліджене явище має випадковий характер.

Ймовірність – є мірою можливості здійснення результату. Формально міра ймовірності є функцією випадкової величини Р(х), яка ставить у відповідність результатам деякі раціональні числа і задовольняє наступним аксіомам:

1) Для будь-якого результату E 0<P(x)<1

2) P(S) = 1, де S – простір виводу або достовірний результат.

3) Якщо Е1, Е2, ..., Еn взаємно виключаючи результати, то справедливе таке співвідношення: Р(Е1)UP(E2)U… UP(En) = P(E1) + P(E2) + … + P(En)

Випадкова величина – це величина, яка з певною ймовірністю приймає одне із значень простору вибору.

Дискретна випадкова величина – це випадкова величина, яка приймає випадкове ізольовані дискретні значення з певними ймовірностями. Число можливих значень дискретної випадкової величини може бути скінченим або зліченим. Пр. кількість абітурієнтів у поточному році, число студентів у групі.

Неперервна випадкова величина – це випадкова величина, яка може приймати всі значення із певного скінченого або нескінченного проміжку. Пр. може бути діаметр колоди, яка подається на л/п раму.

1.2. Закон розподілу. Йомвірнісний розподіл виступає як деяке правило задання ймовірності Рі, для кожного із всіх можливих значень випадкової змінної Хі. Правило задання ймовірності має дві різні форми в залежності від того, чи є випадкова величина неперервною чи дискретною.

Розглянемо для прикладу дискретну випадкову величину, яка описує кількість очок, які випадуть на грані гральної кості. Закон розподілу для цієї випадкової величини х записуємо так:

х 1 2 3 4 5 6
Р 1/6 1/6 1/6 1/6 1/6 1/6

F(x) = P (x<x) – функція розподілу.

Із аксіоми ймовірностей випливають такі властивості F(x):

0 < F(x) < 1 для всіх х

F (- ) = 0

F (+ ) = 1

Функція розподілу зв’язана з функцією ймовірності наступним чином:

1) F(x) = P(xi ) xi <x.

Якщо випадкова величина є дискретною, то її функція розподілу буде мати східчасту форму. Наприклад функція розподілу для гральної кості (рис.1).

А функція розподілу випадкової величини, яка описує кут положення годинникової стрілки на циферблаті у випадкові моменти часу зображено на рис.2.

Перша похідна функції розподілу називають щільністю ймовірності випадкової величини або диференціальною функцією.

Ймовірність попадання випадкової величини в інтервал визначається так:

2) P(x<a)=F(x)= f(x) dx

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 120
Бесплатно скачать Реферат: Загальні положення теорії ймовірностей та математичної статистики