Реферат: Закономерность изменения эффективности накопления сигнала двоичного кода
«Существует один, издавна известный и применяемый в самых различных формах метод борьбы с помехами. Метод этот состоит в многократном повторении сигнала. Несколько принятых образцов или экземпляров сигнала оказываются по разному искаженными помехой, так как сигнал и помеха – процессы независимые. Поэтому, сличая на приемном конце несколько экземпляров одного и того же сигнала, можно восстановить истинную форму переданного сигнала с тем большей уверенностью, чем большим числом экземпляров сигнала мы располагаем. Так как дело сводится в конечном счете к некоторому суммированию отдельных образцов сигнала, то метод этот может быть назван методом накопления» [1].
Однако, остается открытым вопрос о том, что именно и в каком количестве нужно взять от каждого экземпляра принятого сигнала и накапливать, для того чтобы свести к минимуму вредное воздействие помех на принимаемое сообщение.
Для ответа на этот вопрос рассмотрим процесс накопления сигнала для наиболее простого случая – случая приема элементов двоичного кода на фоне флюктуационного шума, когда, по результатам n независимых измерений текущего значения модулируемого параметра переносчика (амплитуда, частота, фаза), нужно определить, какой именно символ был передан: «0» или «1».
Любое сообщение (звук, текст, рисунок), передаваемое с помощью технических средств связи, может быть представлено (закодировано) двоичным кодом [1].
В качестве одного из примеров реализации метода накопления в [2] описан процесс накопления самих значений модулируемого параметра переносчика (МПП).
В литературе по теории оптимального обнаружения сигналов [2...6] для различения символов «0» и «1» рекомендуется накапливать не сами значения xi МПП, а значения другой величины yi , которая функционально связана с наблюдаемыми значениями МПП и условными плотностями их распределений при приеме символа «0» и символа «1».
y = ln [W1 (x)/W0 (x)], (1)
где: W1 (x)/W0 (x) – отношение правдоподобия; W1 (x) – условная плотность распределения значений МПП при приеме символа «1»; W0 (x) – условная плотность распределения значений МПП при приеме символа «0».
Такая точка зрения является общепринятой и нашла свое отражение в учебниках, справочниках, монографиях и энциклопедиях.
В работе [7] показано, что при малых различиях между условными распределениями W0 (x) и W1 (x) такой подход к оптимальному различению символов «0» и «0» оправдан, но он перестает быть корректным при существенных различиях между распределениями W0 (x) и W1 (x) и существенных различиях между значениями допустимых вероятностей ошибок 1-го и 2-го рода.
В реальных технических системах связи в качестве переменной y используется подходящая для этого случая физическая величина, например, напряжение. Тогда ее можно рассматривать как некоторый переносчик сигнала, модулированным параметром которого является амплитуда.
Для оптимального различения символов «0» и «0» при существенных различиях между распределениями W0 (x) и W1 (x) необходимо использовать установленную в работах [7, 8] закономерность изменения эффективности накопления каждого квантованного уровня сигнала двоичного кода в зависимости от вида априорных условных распределений наблюдаемых значений МПП, заключающуюся в том, что при прочих равных условиях эффективность накопления каждого квантованного уровня сигнала достигает своего максимально возможного значения, если условные распределения накапливаемых значений МПП соответствуют минимуму выражения (2) [8]:
{(s0y zF + s1y zD )/(M1 – M0 )} → min, (2)
где: M1 > M0 ; M0 – среднее значение (математическое ожидание) МПП при приеме символа «0» ; M1 – среднее значение МПП при приеме символа «0» ; zF – коэффициент, значение которого зависит от допустимых вероятностей ошибок 1-го рода и вида функции распределения накапливаемых значений МПП при приеме символа «0» [9]; zD – коэффициент, значение которого зависит от допустимых вероятностей ошибок 2-го рода и вида функции распределения накапливаемых значений МПП при приеме символа «0» [9].
Зависимость между значениями zF и zD , с одной стороны, и значениями вероятностей ошибок 1-го и 2-го рода, с другой стороны, можно описать с помощью таких соотношений:
a = 1 – Ф0 (zF ), b = Ф1 (zD ).
где: a – допустимая вероятность ошибок 1-го рода; b – допустимая вероятность ошибок 2-го рода; Ф0 (zF ) – нормированая функция распределения накапливаемых значений МПП на выходе накопителя при приеме символа «0» ; Ф1 (zD ) – нормированая функция распределения накапливаемых значений МПП на выходе накопителя при приеме символа «0».
Обычно функции Ф0 и Ф1 с достаточной для практики точностью описываются нормальным распределением.
zF = V0 /σ0 , zD =V1 /σ1 .
где: V0 – превышение порогового уровня над математическим ожиданием накапливаемых значений МПП на выходе накопителя при приеме символа «0»;
V1 – превышение над пороговым уровнем математического ожидания накапливаемых значений МПП на выходе накопителя при приеме символа «0»;
σ0 – среднеквадратичное отклонение накапливаемых значений МПП при приеме символа «0»;
σ1 – среднеквадратичное отклонение накапливаемых значений МПП при приеме символа «0».
Рассмотрим метод покаскадного накопления сигнала двоичного кода, учитывающий описанную выше закономерность.
Исходя из представлений о накоплении сигнала с точки зрения теории оптимального обнаружения сигнала, основанной на критерии отношения правдоподобия или ему эквивалентных (критерий Байеса, минимаксный критерий и др. [3]), можно прийти к выводу о том, что принципиально безразлично, происходит ли накопление всех «экземпляров» сигнала в одном накопителе или накопление сигнала производится последовательно (покаскадно) в нескольких накопителях. Это положение можно проиллюстрировать следующим математическим соотношением:
Если
ln[l(X)] = ln[l(x1 )] + ln[l(x2 )] +... + ln[l(xn )], (3)
то:
ln[l(X)] = {ln[l(x1 )] + ln[l(x2 )]} +... +{ln[l(xn–1 )] + ln[l(xn )]}, (4)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--